DOI QR코드

DOI QR Code

Mesophilic and thermophilic biomethane production by co-digesting pretreated petrochemical wastewater with beef and dairy cattle manure

  • Siddique, Md. Nurul Islam (Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (UMP)) ;
  • Abd Munaim, Mimi Sakinah (Faculty of Chemical Engineering and Natural Resources, University Malaysia Pahang (UMP)) ;
  • Zularisam, A.W. (Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (UMP))
  • Received : 2012.11.26
  • Accepted : 2013.03.24
  • Published : 2014.01.25

Abstract

The use of pretreated petrochemical wastewater as provender wastewater for anaerobic degradation was explored in a continuous stirred tank reactor with dairy and beef cattle manure, under both mesophilic and thermophilic states. The co-digestion of the wastewaters contributed 50% enhancement in methane production, followed by a $98{\pm}0.5%$ reduction in chemical oxygen demand at 10 days hydraulic retention time. No VFA aggregation was identified. In comparison with the digestion of PWW alone, methane yield increased by 50-60% under mesophilic conditions and 50-65% under thermophilic conditions due to co-digestion.

Keywords

References

  1. S. Sakinkaya, M.F. Sevinli, Journal of Industrial and Engineering Chemistry 19 (2013) 197. https://doi.org/10.1016/j.jiec.2012.08.002
  2. J. Kim, S. Lee, J. Lee, Journal of the Indian Chemical Society 18 (2012) 2147.
  3. L. Singh, M. f. Siddique, A. Ahmad, M.H.A. Rahim, M. Sakinah, A.W. Zularisam, Journal of Industrial and Engineering Chemistry 19 (2013) 659. https://doi.org/10.1016/j.jiec.2012.10.001
  4. H. Hartmann, I. Angelidaki, B.K. Ahrin, Co-digestion of the organic fraction of municipal waste, in: J. Mata-Alvarez (Ed.), Co-digestion of the Organic Fraction of Municipal Waste, Biomethanization of the Organic Fraction of Municipal Solid Waste, IWA, Publishing, London, 2002, p. 181.
  5. D.J. Hills, D.W. Roberts, Agricultural Waste 3 (1981) 179. https://doi.org/10.1016/0141-4607(81)90026-3
  6. A.G. Hashimoto, Biotechnology and Bioengineering 25 (1983) 185. https://doi.org/10.1002/bit.260250115
  7. X. Wu, W. Yao, J. Zhu, C. Miller, Bioresource Technology 101 (2010) 4042. https://doi.org/10.1016/j.biortech.2010.01.052
  8. J. Mata-Alvarez, S. Mace, P. Llabres, Bioresource Technology 74 (2000) 3. https://doi.org/10.1016/S0960-8524(00)00023-7
  9. F.J. Callaghan, D.A.J. Wase, K. Thayanithy, C.F. Forster, Biomass and Bioengineering 22 (1) (2002) 71. https://doi.org/10.1016/S0961-9534(01)00057-5
  10. M. Murto, L. Bjornsson, B. Mattiasson, Journal of Environmental Management 70 (2) (2004) 101. https://doi.org/10.1016/j.jenvman.2003.11.001
  11. P. Kaparaju, J. Rintala, Resources, Conservation and Recycling 43 (2) (2005) 175. https://doi.org/10.1016/j.resconrec.2004.06.001
  12. A. Lehtomaki, S. Huttunen, J.A. Rintala, Resources, Conservation and Recycling 51 (3) (2007) 591. https://doi.org/10.1016/j.resconrec.2006.11.004
  13. G. Lettinga, A.F.M.V. Velseo, S.W. Hobma, W.D. Zeeuw, Biotechnology and Bioengineering 22 (1980) 699. https://doi.org/10.1002/bit.260220402
  14. W.D. Zeeuw, Granular sludge in UASB reactors, in: G. Lettinga, Zehnder/LIB, Grotenhuis JTC, Hulshoff Pol LW (Eds.), Granular Anaerobic Sludge, Microbial. Technol. Pudoc Wageningen, The Netherlands, 1988, , 132-145.
  15. S. Rasi, A. Veijanen, J. Rintala, Energy 32 (2007) 1375. https://doi.org/10.1016/j.energy.2006.10.018
  16. R.A. Alrawi, A. Ahmad, N. Ismail, M.O.A. Kadir, Desalination 269 (2011) 50. https://doi.org/10.1016/j.desal.2010.10.041
  17. A.L. Ahmad, S. Ismail, N. Ibrahim, S. Bhatia, Journal of Chemical Technology and Biotechnology 78 (9) (2003) 971. https://doi.org/10.1002/jctb.892
  18. B.R. Babu, K. Seeni Meera, P. Venkatesan, D. Sunandha, Water, Air, & Soil Pollution 211 (2010) 203. https://doi.org/10.1007/s11270-009-0292-5
  19. S. Chaiprapat, T. Laklam, Bioresource Technology 102 (2011) 4061. https://doi.org/10.1016/j.biortech.2010.12.033
  20. Y. Lin, J. Liang, S. Wu, B. Wang, Journal of Industrial and Engineering Chemistry 19 (2013) 316. https://doi.org/10.1016/j.jiec.2012.08.018
  21. S. Sakinkaya, Journal of Industrial and Engineering Chemistry 19 (2013) 601. https://doi.org/10.1016/j.jiec.2012.09.023
  22. L. Neves, R. Ribeiro, R. Oliveira, M.M. Alves, Biomass and Bioengineering 30 (6) (2006) 599. https://doi.org/10.1016/j.biombioe.2005.12.003
  23. M. Murto, L. Bjornsson, B. Mattiasson, Journal of Environmental Management 70 (2) (2004) 101. https://doi.org/10.1016/j.jenvman.2003.11.001
  24. B. Demirel, O. Yenigun, Bioresource Technology 97 (2006) 1201. https://doi.org/10.1016/j.biortech.2005.05.009
  25. X. Li, L.Q. Li, M.X. Zheng, G.Z. Fu, J.S. Lar, Energy & Fuels 23 (2009) 4635. https://doi.org/10.1021/ef900384p
  26. K. Neira, D. Jeison, Water Science and Technology 61 (5) (2010) 1129. https://doi.org/10.2166/wst.2010.052
  27. H. Bouallagui, B. Rachdi, H. Gannoun, M. Hamdi, Biodegradation 20 (2009) 401. https://doi.org/10.1007/s10532-008-9231-1
  28. M.A. Dareioti, S.N. Dokianakis, K. Stamatelatou, C. Zafiri, M. Kornaros, Desalination 248 (1-3) (2009) 183.
  29. Z. Mladenovska, S. Dabrowski, B.K. Ahring, Water Science and Technology 48 (6) (2003) 271.
  30. I. Angelidaki, B.K. Ahring, Water Science and Technology 41 (2000) 189.
  31. H.B. Moller, S.G. Sommer, B.K. Ahring, Journal of Environmental Quality 33 (2004) 27-36. https://doi.org/10.2134/jeq2004.2700
  32. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., Am Public Health Assoc, Maryland, 2005.
  33. A.G. Hashimoto, V.H. Varel, Y.R. Chen, Agricultural Wastes 3 (1981) 241. https://doi.org/10.1016/0141-4607(81)90011-1
  34. H.B. Moller, S.G. Sommer, B.K. Ahring, Journal of Environmental Quality 33 (2004) 27. https://doi.org/10.2134/jeq2004.2700
  35. H.B. Moller, S.G. Sommer, B.K. Ahring, Biomass and Bioengineering 26 (2004) 485. https://doi.org/10.1016/j.biombioe.2003.08.008
  36. D. Fulford, Running a Biogas Programme: A handbook, The Biogas Technology in China, IT Publications No., Intermediate Technology Publications, 1988, 52.
  37. S. Ke, Z. Shi, International Journal of Environment and Pollution 23 (1) (2005) 65. https://doi.org/10.1504/IJEP.2005.006396
  38. P.E. Poh, M.F. Chong, Bioresource Technology 100 (2009) 1. https://doi.org/10.1016/j.biortech.2008.06.022
  39. R. Maroun, M.E. Fadel, Environmental Science and Technology 41 (2007) 6808. https://doi.org/10.1021/es070686w
  40. A. Ahmad, M.A. Latif, R. Ghufran, Z.A. Wahid, Water Research 45 (2011) 4683. https://doi.org/10.1016/j.watres.2011.05.049
  41. H.H.P. Fang, D.W.C. Chung, Water Science and Technology 40 (1999) 77.
  42. A.J. Ward, P.J. Hobbs, P.J. Holliman, D.J. Jones, Bioresource Technology 99 (2008) 7928. https://doi.org/10.1016/j.biortech.2008.02.044
  43. G. Hegde, P. Pullammanappallil, Environmental Technology 28 (2007) 361. https://doi.org/10.1080/09593332808618797
  44. C.P. Leslie, G.T. Daigger, H.C. Lim, Biological Wastewater Treatment, 2nd. ed., CRC Press, 1999 Revised & Expanded.
  45. N. Aoki, M. Kawase, Water Science and Technology 23 (1991) 1147.
  46. M. Kim, Y.H. Ahn, R.E. Speece, Water Research 36 (2002) 4369. https://doi.org/10.1016/S0043-1354(02)00147-1
  47. M. Goberna, M.A. Schoen, D. Sperl, B. Wett, H. Insam, Biomass and Bioengineering 34 (3) (2010) 340. https://doi.org/10.1016/j.biombioe.2009.11.005
  48. J. Gelegenis, D. Georgakakis, I. Angelidaki, N. Christopoulou, M. Goumenaki, Applied Engineering 84 (6) (2007) 646. https://doi.org/10.1016/j.apenergy.2006.12.001
  49. R.T. Romano, R.H. Zhang, Bioresource Technology 99 (2008) 631. https://doi.org/10.1016/j.biortech.2006.12.043
  50. H. Hartmann, B.K. Ahring, Water Research 39 (2005) 1543. https://doi.org/10.1016/j.watres.2005.02.001
  51. N. Bardiya, A.C. Gaur, Journal of Rural Engineering 4 (1-4) (1997) 1.

Cited by

  1. Microbial population dynamics during long-term sludge adaptation of thermophilic and mesophilic sequencing batch digesters treating sewage fine sieved fraction at varying organic loading rates vol.8, pp.None, 2014, https://doi.org/10.1186/s13068-015-0355-3
  2. 젖소분뇨로부터 최대 바이오가스 생산과 유기물 제거효율을 달성하기 위한 반건식 간헐주입 연속혼합 혐기성반응조의 최적 수리학적 체류시간 도출을 위한 연구 vol.37, pp.12, 2015, https://doi.org/10.4491/ksee.2015.37.12.696
  3. 바이오매스 자원 잠재량 산정 vol.36, pp.1, 2014, https://doi.org/10.7836/kses.2016.36.1.019
  4. 건조방법 형태에 따른 우분 고체연료 수분 감소효과 vol.24, pp.4, 2014, https://doi.org/10.17137/korrae.2016.24.4.105
  5. Application of natural seaweed modified mortar for sustainable concrete production vol.342, pp.None, 2018, https://doi.org/10.1088/1757-899x/342/1/012008
  6. An Assessment of Anaerobic Thermophilic Co-Digestion of Dairy Cattle Manure and Separated Tomato Greenhouse Waste in Lab-Scale Reactors vol.22, pp.2, 2019, https://doi.org/10.2478/ata-2019-0007
  7. Biomethane Production from Anaerobic Codigestion of Palm Oil Mill Effluent with Cattle Manure: A Review vol.31, pp.11, 2014, https://doi.org/10.14233/ajchem.2019.22196
  8. Improvement of Methane Yield by Anaerobic Co-Digestion of Sewage and Petrochemical Wastewater: Effect of Temperature vol.31, pp.12, 2014, https://doi.org/10.14233/ajchem.2019.22198