DOI QR코드

DOI QR Code

Properties of the Nano-Thick Mo/Pt Bilayered Catalytic Layer Employed Dye Sensitized Solar Cells

나노급 Mo/Pt 이중 촉매층 도입에 따른 염료감응태양전지의 물성

  • Noh, Yunyoung (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 노윤영 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Received : 2013.04.29
  • Published : 2014.03.25

Abstract

A Mo/Pt bilayered catalytic layer on a flat glass substrate was used as a counter electrode to improve the energy conversion efficiency of a dye-sensitized solar cell device with the structure of effective area of $0.45cm^2$ glass/FTO/blocking layer/$TiO_2$/N719(dye)/electrolyte/50 nm Pt/50 nm Mo/glass. For comparison, 100 nm-thick Pt and Mo counter electrodes on flat glass substrates were also prepared using the same procedure. The photovoltaic properties, such as the short circuit current density, open circuit voltage, fill factor, energy conversion efficiency, and impedance, were characterized using a solar simulator and potentiostat. The phases and microstructures of the catalytic layers were examined by X-ray diffraction and field emission electron microscopy. The measured energy conversion efficiency of the dye-sensitized solar cell devices with only Pt and Mo/Pt bilayer counter electrodes was 4.60% and 6.30%, respectively. The interface resistance at the interface between the counter electrode and electrolyte decreased when a Mo/Pt bilayer thin film was used. The new phase of $Pt_3Mo$ led to an increase in catalytic activity. This suggests that the Mo/Pt bilayered catalytic layers may provide better efficiency in the dye-sensitized solar cells than the conventional Pt layers.

Keywords

References

  1. B. O'Regan, M. Gratzel, Nature 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. M. Gratzel, Inorg. Chem. 44, 6841 (2005). https://doi.org/10.1021/ic0508371
  3. Y. H. Luo, D. M. Li, and Q. B. Meng, Adv. Mater. 21, 4647 (2009). https://doi.org/10.1002/adma.200901078
  4. R. Jose, V. Thavasi, and S. Ramakrishna, J. Am. Ceram. Soc. 92, 289 (2009). https://doi.org/10.1111/j.1551-2916.2008.02870.x
  5. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Gratzel, J. Am. Chem. Soc. 115, 6382 (1993). https://doi.org/10.1021/ja00067a063
  6. E. Olsen, G. Hagen, and S. E. Lindquist, Sol. Energy Mater. Sol. Cells. 63, 267 (2000). https://doi.org/10.1016/S0927-0248(00)00033-7
  7. A. Kay and M. Gratzel, Sol. Energy Mater. Sol. Cells. 44, 99 (1996). https://doi.org/10.1016/0927-0248(96)00063-3
  8. N. Papageorgiou, W. F. Maier, and M. Gratzel, J. Electrochem. Soc. 144, 876 (1997). https://doi.org/10.1149/1.1837502
  9. H. Bonnemann, G. Khelashvili, S. Behrens, A. Hinsch, K. Skupien, and E. Dinjus, J. Cluster Science. 18, 141 (2007). https://doi.org/10.1007/s10876-006-0092-7
  10. H. M. Kwon, D. W. Han, D. J. Kwak, and Y. M. Sung, Appl. Phys. 10, 172 (2010).
  11. J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Graetzel, A. Hinsch, S. Hore, U. Wurfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, Res. Appl. 15, 1 (2007).
  12. Y. Y. Noh and O. S. Song, Koren J. Met. Mater. 51, 71 (2013).
  13. J. J. Han, K. C. Yoo, M. J. Ko, B. K. Yu, Y. Y. Noh, and O. S. Song, Met. Mater. Int. 18, 105 (2012). https://doi.org/10.1007/s12540-012-0013-2
  14. Y. Y. Noh and O. S. Song, Koren J. Met. Mater. 52, 61 (2014). https://doi.org/10.3365/KJMM.2014.52.1.061
  15. J. M. Jaksic, Lj. Vracar, S. G. Neophytides, S. Zafeiratos, G. Papakonstantinou, N. V. Krstajic, and M. M. Jaksic, Surf. Sci. 598, 156 (2005). https://doi.org/10.1016/j.susc.2005.08.036