DOI QR코드

DOI QR Code

Influence of $TiO_2 $ Coating Thickness on Energy Conversion Efficiency of Dye-Sensitized Solar Cells

  • Kim, Young-Hun (Department of Materials Engineering, Korea Aerospace University) ;
  • Lee, In-Kyu (Department of Materials Engineering, Korea Aerospace University) ;
  • Song, Yo-Seung (Department of Materials Engineering, Korea Aerospace University) ;
  • Lee, Myung-Hyun (Energy & Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Bae-Yeon (Department of Materials Science and Engineering, University of Incheon) ;
  • Cho, Nam-Ihn (Department of Electronic Engineering, Sun Moon University) ;
  • Lee, Deuk Yong (Department of Biomedical Engineering, Daelim University)
  • Received : 2013.06.20
  • Accepted : 2013.08.23
  • Published : 2014.03.20

Abstract

Dye-sensitized solar cells (DSSCs) were synthesized using a $0.25cm^2$ area $TiO_2$ nanoparticle/nanorod layer as an electrode and platinum (Pt) as a counter electrode. The $TiO_2 $ nanoparticle/nanorod layer was prepared by spin coating and spray coating on fluorine-doped tin oxide glass, respectively. The Pt counter electrode and the ruthenium dye anchored electrode were then assembled as a function of thickness of the $TiO_2$ nanorod layer in a range of 8 to $30{\mu}m$. The best photovoltaic performance was observed in the case of a DSSC consisting of a 600 nm thick $TiO_2$ nanoparticle layer and a $20{\mu}m$ thick $TiO_2$ nanorod layer: a short circuit current density of $11.54mA{\cdot}cm^{-2}$, open circuit voltage of 0.72V, fill factor of 61.2%, and energy conversion efficiency of 5.07%. A $TiO_2$ nanorod/nanoparticle electrode layer with good adhesion was successfully fabricated.

Keywords

References

  1. M. Y. Song, D. K. Kim, K. J. Ihn, S. M. Jo, and D. Y. Kim, Nanotechnology 15, 1861 (2004). https://doi.org/10.1088/0957-4484/15/12/030
  2. K. Fujuhara, A. Kumar, R. Jose, S. Ramakrishna, and S. Uchida, Nanotechnology 18, 365709 (2007). https://doi.org/10.1088/0957-4484/18/36/365709
  3. K. Onozuka, B. Ding, Y. Tsuge, T. Naka, M. Yamazaki, S. Sugi, S. Ohno, M. Yoshikawa, and S. Shiratori, Nanotechnology 17, 1026 (2006). https://doi.org/10.1088/0957-4484/17/4/030
  4. S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Pechy, and M. Grazel, Prog. Photovol. Res. Appl. 15, 603 (2007). https://doi.org/10.1002/pip.768
  5. T. Prakash, Electron. Mater. Lett. 8, 231 (2012).
  6. M. Gomez, E. Magnusson, E. Olsson, A. Hagfeldt, S. E. Lindquist, and C. G. Granqvist, Sol. Energy Mater. Sol. Cells 62, 259 (2000). https://doi.org/10.1016/S0927-0248(99)00167-1
  7. N. Sato, K. Nakajima, N. Usami, H. Takahashi, A. Muramatsu, and E. Matsubara, Mater. Trans. 43, 1533 (2002). https://doi.org/10.2320/matertrans.43.1533
  8. D.Y. Lee, J. Cho, M. Lee, N. Cho, and Y. Song, J. Korean Phys. Soc. 55, 84 (2009). https://doi.org/10.3938/jkps.55.84
  9. D.Y. Lee, J. Kim, Y. Kim, I. Lee, M. Lee, and B. Kim, J. Sensor Sci. Technol. 21, 395 (2012). https://doi.org/10.5369/JSST.2012.21.6.395
  10. D. Y. Lee, B. Kim, S. Lee, M. Lee, Y. Song, and J. Lee, J. Korean Phys. Soc. 48, 1686 (2006).
  11. S. W. Lee, K. K. Kim, Y. Cui, S.C . Lim, Y. W. Cho, S. M. Kim, and Y. H. Lee, Nano 5, 133 (2010). https://doi.org/10.1142/S1793292010002025
  12. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Welssortel, J. Salbeck, H. Spreitzer, and M. Graztel, Nature 395, 583 (1998). https://doi.org/10.1038/26936
  13. R. Zhu, C. Jiang, X. Liu, B. Liu, A. Kumar, and S. Ramakrishna, Appl. Phys. Lett. 93, 013102 (2008). https://doi.org/10.1063/1.2907317
  14. Y. Chen, S.Y. Yang, and J. Kim, Electron. Mater. Lett. 8, 301 (2012). https://doi.org/10.1007/s13391-012-1106-2
  15. S. R. Kim, Md. K. Parvez, and M. Chhowalla, Chem. Phys. Lett. 483, 124 (2009). https://doi.org/10.1016/j.cplett.2009.10.066
  16. J. Greulich, M. Glatthaar, and S. Rein, Prog. Photovol.: Res. Appl. 18, 511 (2010). https://doi.org/10.1002/pip.979
  17. S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Pechy, and M. Gratzel, Prog. Photovol.: Res. Appl. 15, 603 (2007). https://doi.org/10.1002/pip.768

Cited by

  1. Effect of TiO2 Coating Thickness on Photovoltaic Performance of Dye-sensitized Solar Cells Prepared by Screen-printing Using TiO2 Powders vol.51, pp.4, 2014, https://doi.org/10.4191/kcers.2014.51.4.362
  2. An Investigation on Dye-Sensitized Solar Cell Performance Influenced by Radiant Intensity and Illuminated Area in Concentrating Photovoltaic System vol.1070, pp.None, 2014, https://doi.org/10.4028/www.scientific.net/amr.1070-1072.616
  3. Nanometer-thick amorphous-SnO2 layer as an oxygen barrier coated on a transparent AZO electrode vol.12, pp.4, 2014, https://doi.org/10.1007/s13391-016-4013-0
  4. Efficiency Investigations of Organic/Inorganic Hybrid ZnO Nanoparticles Based Dye-Sensitized Solar Cells vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/9081346
  5. Photoanode Thickness Optimization and Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells based on a Carbazole-Containing Ruthenium Dye vol.72, pp.5, 2014, https://doi.org/10.3938/jkps.72.639
  6. Modeling dye-sensitized solar cells with graphene based on nanocomposites in the Brillouin zone and density functional theory vol.58, pp.1, 2021, https://doi.org/10.1007/s43207-020-00063-8