DOI QR코드

DOI QR Code

Targeting Cancer with Nano-Bullets: Curcumin, EGCG, Resveratrol and Quercetin on Flying Carpets

  • Published : 2014.05.15

Abstract

It is becoming progressively more understandable that different phytochemicals isolated from edible plants interfere with specific stages of carcinogenesis. Cancer cells have evolved hallmark mechanisms to escape from death. Concordant with this approach, there is a disruption of spatiotemproal behaviour of signaling cascades in cancer cells, which can escape from apoptosis because of downregulation of tumor suppressor genes and over-expression of oncogenes. Genomic instability, intra-tumor heterogeneity, cellular plasticity and metastasizing potential of cancer cells all are related to molecular alterations. Data obtained through in vitro studies has convincingly revealed that curcumin, EGCG, resveratrol and quercetin are promising anticancer agents. Their efficacy has been tested in tumor xenografted mice and considerable experimental findings have stimulated researchers to further improve the bioavailability of these nutraceuticals. We partition this review into different sections with emphasis on how bioavailability of curcumin, EGCG, resveratrol and quercetin has improved using different nanotechnology approaches.

Keywords

References

  1. Ahmed SR, Dong J, Yui M, et al (2013). Quantum dots incorporated magnetic nanoparticles for imaging colon carcinoma cells. J Nanobiotechnol, 11, 28. https://doi.org/10.1186/1477-3155-11-28
  2. Alexis F, Pridgen EM, Langer R, Farokhzad OC (2010). Nanoparticle technologies for cancer therapy. Journal, 55-86.
  3. Allan B (1999). Closer to nature: new biomaterials and tissue engineering in ophthalmology. Br J Ophthalmol, 83, 1235-40. https://doi.org/10.1136/bjo.83.11.1235
  4. Alotaibi A, Bhatnagar P, Najafzadeh M, Gupta KC, Anderson D (2013). Tea phenols in bulk and nanoparticle form modify DNA damage in human lymphocytes from colon cancer patients and healthy individuals treated in vitro with platinum-based chemotherapeutic drugs. Nanomedicine, 8, 389-401. https://doi.org/10.2217/nnm.12.126
  5. Asghar W, Islam M, Wadajkar AS, et al (2012). PLGA micro-and nanoparticles loaded into gelatin scaffold for controlled drug release. Nanotechnology, IEEE Transactions on, 11, 546-53.
  6. Bu L, Gan L-C, Guo X-Q, et al (2013). Trans-resveratrol loaded chitosan nanoparticles modified with biotin and avidin to target hepatic carcinoma. Int J Pharm, 452, 355-62. https://doi.org/10.1016/j.ijpharm.2013.05.007
  7. Campolongo MJ,Luo D (2009). Drug delivery: old polymer learns new tracts. Nature materials, 8, 447-8. https://doi.org/10.1038/nmat2456
  8. Chang P-Y, Peng S-F, Lee C-Y, et al (2013). Curcumin-loaded nanoparticles induce apoptotic cell death through regulation of the function of MDR1 and reactive oxygen species in cisplatin-resistant CAR human oral cancer cells. Int J Oncol, 43, 1141-50. https://doi.org/10.3892/ijo.2013.2050
  9. Chen J, Dai W, He Z, et al (2013). Fabrication and evaluation of curcumin-loaded nanoparticles based on solid lipid as a new type of colloidal drug delivery system. Indian J Pharmaceutical Sci, 75, 178.
  10. Chouhan R,Bajpai A (2009). An in vitro release study of 5-fluoro-uracil (5-FU) from swellable poly-(2-hydroxyethyl methacrylate)(PHEMA) nanoparticles. J Mater Sci Mater Med, 20, 1103-14. https://doi.org/10.1007/s10856-008-3677-x
  11. Coelho JF, Ferreira PC, Alves P, et al (2010). Drug delivery systems: Advanced technologies potentially applicable in personalized treatments. EPMA J, 1, 164-209. https://doi.org/10.1007/s13167-010-0001-x
  12. Cruz LJ, Tacken PJ, Fokkink R, et al (2010). Targeted PLGA nano-but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release, 144, 118-26. https://doi.org/10.1016/j.jconrel.2010.02.013
  13. Dai X, Yin H, Sun L, et al (2013). Potential therapeutic efficacy of curcumin in liver cancer. Asian Pac J Cancer Prev, 14, 3855-9. https://doi.org/10.7314/APJCP.2013.14.6.3855
  14. Danhier F, Ansorena E, Silva JM, et al (2012). PLGA-based nanoparticles: An overview of biomedical applications. J Control Release, 161, 505-22. https://doi.org/10.1016/j.jconrel.2012.01.043
  15. Dilnawaz F,Sahoo SK (2013). Enhanced accumulation of curcumin and temozolomide loaded magnetic nanoparticles executes profound cytotoxic effect in glioblastoma spheroid model. Eur J Pharm Biopharm, 85, 452-62. https://doi.org/10.1016/j.ejpb.2013.07.013
  16. Dobic SN, Filipovic JM, Tomic SL (2012). Synthesis and characterization of poly (2-hydroxyethyl methacrylate/itaconic acid/poly (ethylene glycol) dimethacrylate) hydrogels. Chemical Engineering Journal, 179, 372-80. https://doi.org/10.1016/j.cej.2011.10.083
  17. Dora CL, Silva L, Putaux J-L, et al (2012). Poly (ethylene glycol) hydroxystearate-based nanosized emulsions: effect of surfactant concentration on their formation and ability to solubilize quercetin. J Biomed Nanotechnol, 8, 202-10. https://doi.org/10.1166/jbn.2012.1380
  18. Fan G-H, Wang Z-M, Yang, et al (2014). Resveratrol inhibits oesophageal adenocarcinoma cell proliferation via AMP-activated protein kinase signaling. Asian Pac J Cancer Prev, 15, 677-82. https://doi.org/10.7314/APJCP.2014.15.2.677
  19. Fang J-Y, Li Z-H, Li Q, et al (2012). Resveratrol affects protein kinase C activity and promotes apoptosis in human colon carcinoma cells. Asian Pac J Cancer Prev, 13, 6017-22. https://doi.org/10.7314/APJCP.2012.13.12.6017
  20. Feng R, Song Z, Zhai G (2012). Preparation and in vivo pharmacokinetics of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles. Int J Nanomedicine, 7, 4089-98.
  21. Figueiro F, Bernardi A, Frozza RL, et al (2013). Resveratrol-loaded lipid-core nanocapsules treatment reduces in vitro and in vivo glioma growth. J Biomed Nanotechnol, 9, 516-26. https://doi.org/10.1166/jbn.2013.1547
  22. Fuertes AB, Valle-Vigon P, Sevilla M (2010). Synthesis of colloidal silica nanoparticles of a tunable mesopore size and their application to the adsorption of biomolecules. J Colloid Interface Sci, 349, 173-80. https://doi.org/10.1016/j.jcis.2010.05.041
  23. Gangwar RK, Tomar GB, Dhumale VA, et al (2013). Curcumin Conjugated Silica Nanoparticles for Improving Bioavailability and Its Anticancer Applications. J Agric Food Chem, 61, 9632-7.
  24. Gao X, Wang B, Wei X, et al (2012). Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale, 4, 7021-30. https://doi.org/10.1039/c2nr32181e
  25. Gao X, Zhang X, Zhang X, et al (2011). Amphiphilic polylactic acid-hyperbranched polyglycerol nanoparticles as a controlled release system for poorly water-soluble drugs: physicochemical characterization. J Pharm Pharmacol, 63, 757-64. https://doi.org/10.1111/j.2042-7158.2011.01260.x
  26. Giteau A, Venier-Julienne M-C, Aubert-Pouessel A, Benoit J-P (2008). How to achieve sustained and complete protein release from PLGA-based microparticles? Int J Pharm, 350, 14-26. https://doi.org/10.1016/j.ijpharm.2007.11.012
  27. Gratton SE, Ropp PA, Pohlhaus PD, et al (2008). The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences, 105, 11613-8. https://doi.org/10.1073/pnas.0801763105
  28. Guri A, Gulseren I, Corredig M (2013). Utilization of solid lipid nanoparticles for enhanced delivery of curcumin in cocultures of HT29-MTX and Caco-2 cells. Food Funct, 4, 1410-9. https://doi.org/10.1039/c3fo60180c
  29. Guzman-Villanueva D, El-Sherbiny IM, Herrera-Ruiz D, Smyth HD (2013). Design and In vitro evaluation of a new nano- microparticulate system for enhanced aqueous-phase solubility of curcumin. Biomed Res Int, 2013, 724763.
  30. Harakeh S, Diab-Assaf M, Azar R, et al (2014). Epigallocatechin-3-gallate Inhibits Tax-dependent Activation of Nuclear Factor Kappa B and of Matrix Metalloproteinase 9 in Human T-cell Lymphotropic Virus-1 Positive Leukemia Cells. Asian Pac J Cancer Prev: APJCP, 15, 1219. https://doi.org/10.7314/APJCP.2014.15.3.1219
  31. He J, Wang X-M, Spector M, Cui F-Z (2012). Scaffolds for central nervous system tissue engineering. Front Mater Sci, 6, 1-25. https://doi.org/10.1007/s11706-012-0157-5
  32. Hu B, Ting Y, Yang X, et al (2012). Nanochemoprevention by encapsulation of (-)-epigallocatechin-3-gallate with bioactive peptides/chitosan nanoparticles for enhancement of its bioavailability. Chem Commun (Camb), 48, 2421-3. https://doi.org/10.1039/c2cc17295j
  33. Hussain HI, Yi Z, Rookes JE, Kong LX, Cahill DM (2013). Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J Nanopart Res, 15, 1-15.
  34. Hussein AS,Abdullah N (2013). In vitro degradation of poly (D, L-lactide-co-glycolide) nanoparticles loaded with linamarin. IET Nanobiotechnol, 7, 33-41. https://doi.org/10.1049/iet-nbt.2012.0012
  35. Jain AK, Thanki K, Jain S (2013). Co-encapsulation of tamoxifen and quercetin in polymeric nanoparticles: implications on oral Bioavailability, antitumor efficacy, and drug-Induced toxicity. Molecular Pharmaceutics, 10, 3459-74. https://doi.org/10.1021/mp400311j
  36. Jantas R,Herczynska L (2010). Preparation and characterization of the poly (2-hydroxyethyl methacrylate)-salicylic acid conjugate. Polym Bull, 64, 459-69. https://doi.org/10.1007/s00289-009-0189-x
  37. Jiang W-j, Wu C-l, Zhang R-r (2012). General assembly of organic molecules in core-shell mesoporous silica nanoparticles. Materials Letters, 77, 100-2. https://doi.org/10.1016/j.matlet.2012.03.006
  38. Karthikeyan S, Rajendra Prasad N, Ganamani A, Balamurugan E (2013). Anticancer activity of resveratrol-loaded gelatin nanoparticles on NCI-H460 non-small cell lung cancer cells. Biomedicine & Preventive Nutrition, 3, 64-73. https://doi.org/10.1016/j.bionut.2012.10.009
  39. Khan N, Bharali DJ, Adhami VM, et al (2013). Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis, 35, 415-23.
  40. Kim MI, Ham HO, Oh S-D, et al (2006). Immobilization of Mucor javanicus lipase on effectively functionalized silica nanoparticles. J Mol Catal B Enzym, 39, 62-8. https://doi.org/10.1016/j.molcatb.2006.01.028
  41. Kreuter J (2007). Nanoparticles -a historical perspective. Int J Pharm, 331, 1-10. https://doi.org/10.1016/j.ijpharm.2006.10.021
  42. Kulisic-Bilusic T, Schmoller I, Schnabele K, Siracusa L, Ruberto G (2012). The anticarcinogenic potential of essential oil and aqueous infusion from caper (Capparis spinosa L). Food Chemistry, 132, 261-7. https://doi.org/10.1016/j.foodchem.2011.10.074
  43. Kumar SSD, Surianarayanan M, Vijayaraghavan R, Mandal AB, MacFarlane D (2014). Curcumin loaded poly (2-hydroxyethyl methacrylate) nanoparticles from gelled ionic liquid. In vitro cytotoxicity and anti-cancer activity in SKOV-3 cells. Eur J Pharm Sci, 51, 34-44. https://doi.org/10.1016/j.ejps.2013.08.036
  44. Li J-L, Wang L, Liu X-Y, et al (2009). In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Letters, 274, 319-26. https://doi.org/10.1016/j.canlet.2008.09.024
  45. Li Y, Zhang S, Geng J-X, Hu X-Y (2013). Curcumin inhibits human non-small cell lung cancer A549 cell proliferation through regulation of Bcl-2/Bax and cytochrome C. Asian Pac J Cancer Prev, 14, 4599-602. https://doi.org/10.7314/APJCP.2013.14.8.4599
  46. Lin C-H, Cheng S-H, Liao W-N, et al (2012). Mesoporous silica nanoparticles for the improved anticancer efficacy of cis-platin. Int J Pharm, 429, 138-47. https://doi.org/10.1016/j.ijpharm.2012.03.026
  47. Lloyd AW, Faragher RG, Denyer SP (2001). Ocular biomaterials and implants. Biomaterials, 22, 769-85. https://doi.org/10.1016/S0142-9612(00)00237-4
  48. Ma S, Wang Y, Zhu Y (2011). A simple room temperature synthesis of mesoporous silica nanoparticles for drug storage and pressure pulsed delivery. Journal of Porous Materials, 18, 233-9. https://doi.org/10.1007/s10934-010-9375-3
  49. Michaud-Levesque J, Bousquet-Gagnon N, Beliveau R (2012). Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration. Experimental Cell Research, 318, 925-35. https://doi.org/10.1016/j.yexcr.2012.02.017
  50. Miladi K, Sfar S, Fessi H, Elaissari A (2013). Drug carriers in osteoporosis: Preparation, drug encapsulation and applications. Int J Pharm, 445, 181-95. https://doi.org/10.1016/j.ijpharm.2013.01.031
  51. Mohanraj V, Chen Y (2006). Nanoparticles-a review. Tropical Journal of Pharmaceutical Research, 5, 561-73.
  52. Park SK, Kim KD, Kim HT (2002). Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles. Colloids Surf A Physicochem Eng Asp, 197, 7-17. https://doi.org/10.1016/S0927-7757(01)00683-5
  53. Pezzuto JM (1997). Plant-derived anticancer agents. Biochem Pharmacol, 53, 121-33. https://doi.org/10.1016/S0006-2952(96)00654-5
  54. Pool H, Mendoza S, Xiao H, McClements DJ (2013). Encapsulation and release of hydrophobic bioactive components in nanoemulsion-based delivery systems: Impact of physical form on quercetin bioaccessibility. Food Funct, 4, 162-74. https://doi.org/10.1039/c2fo30042g
  55. Rachmawati H, Edityaningrum CA, Mauludin R (2013). Molecular Inclusion Complex of Curcumin-$\beta$-Cyclodextrin Nanoparticle to Enhance Curcumin Skin Permeability from Hydrophilic Matrix Gel. Aaps Pharmscitech, 14, 1303-12. https://doi.org/10.1208/s12249-013-0023-5
  56. Rao CR, Kulkarni GU, Thomas PJ, Edwards PP (2000). Metal nanoparticles and their assemblies. Chem Soc Rev, 29, 27-35. https://doi.org/10.1039/a904518j
  57. Rao KS, El-Hami K, Kodaki T, Matsushige K, Makino K (2005). A novel method for synthesis of silica nanoparticles. J Colloid Interface Sci, 289, 125-31. https://doi.org/10.1016/j.jcis.2005.02.019
  58. Ray L, Kumar P, Gupta KC (2013). The activity against Ehrlich's ascites tumors of doxorubicin contained in self assembled, cell receptor targeted nanoparticle with simultaneous oral delivery of the green tea polyphenol epigallocatechin-3-gallate. Biomaterials, 34, 3064-76. https://doi.org/10.1016/j.biomaterials.2012.12.044
  59. Roy M,Mukherjee S (2014). Reversal of Resistance towards Cisplatin by Curcumin in Cervical Cancer Cells. Asian Pac J Cancer Prev: APJCP, 15, 1403. https://doi.org/10.7314/APJCP.2014.15.3.1403
  60. Salehi P, Makhoul G, Roy R, et al (2013). Curcumin loaded NIPAAM/VP/PEG-A nanoparticles: physicochemical and chemopreventive properties. J Biomater Sci Polym Ed, 24, 574-88. https://doi.org/10.1080/09205063.2012.700111
  61. Sanna V, Roggio AM, Siliani S, et al (2012). Development of novel cationic chitosan- and anionic alginate-coated poly(D,L-lactide-co-glycolide) nanoparticles for controlled release and light protection of resveratrol. Int J Nanomedicine, 7, 5501-16.
  62. Sanna V, Siddiqui IA, Sechi M, Mukhtar H (2013). Resveratrol-Loaded Nanoparticles Based on Poly (epsilon-caprolactone) and Poly(d,l-lactic-co-glycolic acid)-Poly (ethylene glycol) Blend for Prostate Cancer Treatment. Mol Pharm, 10, 3871-81. https://doi.org/10.1021/mp400342f
  63. Sawadogo WR, Schumacher M, Teiten M-H, Dicato M, Diederich M (2012). Traditional West African pharmacopeia, plants and derived compounds for cancer therapy. Biochem Pharmacol, 84, 1225-40. https://doi.org/10.1016/j.bcp.2012.07.021
  64. Saxena V,Hussain MD (2013). Polymeric mixed micelles for delivery of curcumin to multidrug resistant ovarian cancer. J Biomed Nanotechnol, 9, 1146-54. https://doi.org/10.1166/jbn.2013.1632
  65. Sharma C, Nusri Q-A, Begum S, et al (2012). (-)-Epigallocatechin-3-gallate induces apoptosis and inhibits invasion and migration of human cervical cancer cells. Asian Pac J Cancer Prev: APJCP, 13, 4815-22. https://doi.org/10.7314/APJCP.2012.13.9.4815
  66. Sharma RK, Das S, Maitra A (2005). Enzymes in the cavity of hollow silica nanoparticles. J Colloid Interface Sci, 284, 358-61. https://doi.org/10.1016/j.jcis.2004.10.006
  67. Shukla R, Chanda N, Zambre A, et al (2012). Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc Natl Acad Sci USA, 109, 12426-31. https://doi.org/10.1073/pnas.1121174109
  68. Singh M, Manikandan S, Kumaraguru A (2011). Nanoparticles: A new technology with wide applications. Res J Nanosci Nanotechnol, 1, 1-11. https://doi.org/10.3923/rjnn.2011.1.11
  69. Sjaarda DR, Roach DR, Yagubi AI, Castle AJ, Svircev AM (2013). Role of bacterial exopolysaccharides and monosaccharides in Erwinia amylovora resistance to bacteriophages. Canadian J Plant Pathol, 35, 125.
  70. Sobczak-Kupiec A, Malina D, Piatkowski M, et al (2012). Physicochemical and Biological Properties of Hydrogel/Gelatin/Hydroxyapatite PAA/G/HAp/AgNPs Composites Modified with Silver Nanoparticles. J Nanosci Nanotechnol, 12, 9302-11. https://doi.org/10.1166/jnn.2012.6756
  71. Sperling R, Parak W (2010). Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans A Math Phys Eng Sci, 368, 1333-83. https://doi.org/10.1098/rsta.2009.0273
  72. Stakleff KS, Sloan T, Blanco D, et al (2012). Resveratrol exerts differential effects in vitro and in vivo against ovarian cancer cells. Asian Pac J Cancer Prev, 13, 1333-40. https://doi.org/10.7314/APJCP.2012.13.4.1333
  73. Stober W, Fink A, Bohn E (1968). Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci, 26, 62-9. https://doi.org/10.1016/0021-9797(68)90272-5
  74. Sun J, Bi C, Chan HM, et al (2013). Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Colloids Surf B Biointerfaces, 111, 367-75. https://doi.org/10.1016/j.colsurfb.2013.06.032
  75. Tang J-C, Shi H-S, Wan L-Q, Wang Y-S, Wei Y-Q (2013). Enhanced antitumor effect of curcumin liposomes with local hyperthermia in the LL/2 model. Asian Pac J Cancer Prev, 14, 2307-10. https://doi.org/10.7314/APJCP.2013.14.4.2307
  76. Tang L,Cheng J (2013). Nonporous silica nanoparticles for nanomedicine application. Nano Today, 8, 290-312. https://doi.org/10.1016/j.nantod.2013.04.007
  77. Teiten M-H, Gaascht F, Dicato M, Diederich M (2013). Anticancer bioactivity of compounds from medicinal plants used in European medieval traditions. Biochem Pharmacol. 86, 1239-47. https://doi.org/10.1016/j.bcp.2013.08.007
  78. Tsou T-L, Tang S-T, Huang Y-C, et al (2005). Poly (2-hydroxyethyl methacrylate) wound dressing containing ciprofloxacin and its drug release studies. J Mater Sci Mater Med, 16, 95-100. https://doi.org/10.1007/s10856-005-5954-2
  79. Vanic Z, Skalko-Basnet N (2013). Nanopharmaceuticals for improved topical vaginal therapy: Can they deliver? Eur J Pharm Sci, 50, 29-41. https://doi.org/10.1016/j.ejps.2013.04.035
  80. Vergaro V, Lvov YM, Leporatti S (2012). Halloysite Clay Nanotubes for Resveratrol Delivery to Cancer Cells. Macromol Biosci, 12, 1265-71. https://doi.org/10.1002/mabi.201200121
  81. Wang G, Wang J, Chen X, et al (2013). The JAK2/STAT3 and mitochondrial pathways are essential for quercetin nanoliposome-induced C6 glioma cell death. Cell Death Dis, 4, 746. https://doi.org/10.1038/cddis.2013.242
  82. Wang G, Wang JJ, Yang GY, et al (2012). Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. Int J Nanomedicine, 7, 271-80. https://doi.org/10.2217/nnm.11.186
  83. Wu C-F, Yang J-Y, Wang F, Wang X-X (2013a). Resveratrol: botanical origin, pharmacological activity and applications. Chin J Nat Med, 11, 1-15.
  84. Wu S, Sun K, Wang X, et al (2013b). Protonation of epigallocatechin-3-gallate (EGCG) results in massive aggregation and reduced oral bioavailability of EGCG-dispersed selenium nanoparticles. J Agric Food Chem, 61, 7268-75. https://doi.org/10.1021/jf4000083
  85. Yang M, Wang G, Yang Z (2008). Synthesis of hollow spheres with mesoporous silica nanoparticles shell. Materials Chemistry and Physics, 111, 5-8. https://doi.org/10.1016/j.matchemphys.2008.03.014
  86. Yin H-T, Tian Q-Z, Guan L, et al (2013a). In vitro and in vivo evaluation of the antitumor efficiency of resveratrol against lung cancer. Asian Pac J Cancer Prev, 14, 1703-6. https://doi.org/10.7314/APJCP.2013.14.3.1703
  87. Yin H-T, Zhang D, Wu X, Huang X-E, Chen G (2013b). In vivo evaluation of curcumin-loaded nanoparticles in a A549 xenograft mice model. Asian Pac J Cancer Prev, 14, 409-12. https://doi.org/10.7314/APJCP.2013.14.1.409
  88. Zhu J, Marchant RE (2011). Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices, 8, 607-26. https://doi.org/10.1586/erd.11.27

Cited by

  1. In vitro and In vivo Antitumor Activity of Tiliacorinine in Human Cholangiocarcinoma vol.15, pp.17, 2014, https://doi.org/10.7314/APJCP.2014.15.17.7473
  2. Dealing Naturally with Stumbling Blocks on Highways and Byways of TRAIL Induced Signaling vol.15, pp.19, 2014, https://doi.org/10.7314/APJCP.2014.15.19.8041
  3. Drugs from Marine Sources: Modulation of TRAIL Induced Apoptosis in Cancer Cells vol.15, pp.20, 2014, https://doi.org/10.7314/APJCP.2014.15.20.9045
  4. Identification of Anti-Cancer Targets of Eco-Friendly Waste Punica granatum Peel by Dual Reverse Virtual Screening and Binding Analysis vol.15, pp.23, 2014, https://doi.org/10.7314/APJCP.2014.15.23.10345
  5. Autophagy-associated Targeting Pathways of Natural Products during Cancer Treatment vol.15, pp.24, 2014, https://doi.org/10.7314/APJCP.2014.15.24.10557
  6. Curcumin Reactivates Silenced Tumor Suppressor Gene RARβ by Reducing DNA Methylation vol.29, pp.8, 2015, https://doi.org/10.1002/ptr.5373
  7. Effect of curcumin on the interaction between androgen receptor and Wnt/β-catenin in LNCaP xenografts vol.56, pp.9, 2015, https://doi.org/10.4111/kju.2015.56.9.656
  8. Lycopene inhibits the cell proliferation and invasion of human head and neck squamous cell carcinoma vol.14, pp.4, 2016, https://doi.org/10.3892/mmr.2016.5597
  9. HPLC Methods for Quantitation of Exemestane–Luteolin and Exemestane–Resveratrol Mixtures in Nanoformulations vol.54, pp.8, 2016, https://doi.org/10.1093/chromsci/bmw063
  10. Influence of Hydrocolloids (Dietary Fibers) on Lipid Digestion of Protein-Stabilized Emulsions: Comparison of Neutral, Anionic, and Cationic Polysaccharides vol.81, pp.7, 2016, https://doi.org/10.1111/1750-3841.13361
  11. Antioxidants Bound to an Insoluble Food Matrix: Their Analysis, Regeneration Behavior, and Physiological Importance vol.16, pp.3, 2017, https://doi.org/10.1111/1541-4337.12263
  12. Cancer Chemoprevention by Phytochemicals: Nature’s Healing Touch vol.22, pp.3, 2017, https://doi.org/10.3390/molecules22030395
  13. Halloysite nanotubes as a new drug-delivery system: a review vol.51, pp.03, 2016, https://doi.org/10.1180/claymin.2016.051.3.03
  14. Recent progress on biocompatible nanocarrier-based genistein delivery systems in cancer therapy pp.1029-2330, 2019, https://doi.org/10.1080/1061186X.2018.1514040