DOI QR코드

DOI QR Code

Growth, Photosynthesis and Chlorophyll Fluorescence of Chinese Cabbage in Response to High Temperature

고온 스트레스에 대한 배추의 생장과 광합성 및 엽록소형광 반응

  • Oh, Soonja (Agricultural Research Center for Climate Change, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Moon, Kyung Hwan (Agricultural Research Center for Climate Change, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Son, In-Chang (Agricultural Research Center for Climate Change, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Song, Eun Young (Agricultural Research Center for Climate Change, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Moon, Young Eel (Citrus Research Station, National Institute of Horticultural & Herbal Science, Rural Development Adinistration) ;
  • Koh, Seok Chan (Department of Biology and Research Institute for Basic Sciences, Jeju National University)
  • 오순자 (농촌진흥청 국립원예특작과학원 온난화대응농업연구센터) ;
  • 문경환 (농촌진흥청 국립원예특작과학원 온난화대응농업연구센터) ;
  • 손인창 (농촌진흥청 국립원예특작과학원 온난화대응농업연구센터) ;
  • 송은영 (농촌진흥청 국립원예특작과학원 온난화대응농업연구센터) ;
  • 문영일 (농촌진흥청 국립원예특작과학원 감귤시험장) ;
  • 고석찬 (제주대학교 생물학과.기초과학연구소)
  • Received : 2013.11.02
  • Accepted : 2014.02.05
  • Published : 2014.06.30

Abstract

In order to gain insight into the physiological responses of plants to high temperature stress, the effects of temperature on Chinese cabbage (Brassica campestris subsp. napus var. pekinensis cv. Detong) were investigated through analyses of photosynthesis and chlorophyll fluorescence under 3 different temperatures in the temperature gradient tunnel. Growth (leaf length and number of leaves) during the rosette stage was greater at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures than at ambient temperature. Photosynthetic $CO_2$ fixation rates of Chinese cabbage grown under the different temperatures did not differ significantly. However, dark respiration rate was significantly higher in the cabbage that developed under ambient temperature relative to elevated temperature. Furthermore, elevated growth temperature increased transpiration rate and stomatal conductance resulting in an overall decrease of water use efficiency. The chlorophyll a fluorescence transient was also considerably affected by high temperature stress; the fluorescence yield $F_J$, $F_I$, and $F_P$ decreased considerably at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures, with induction of $F_K$ and decrease of $F_V/F_O$. The values of RC/CS, ABS/CS, TRo/CS, and ETo/CS decreased considerably, while DIo/CS increased with increased growth temperature. The symptoms of soft-rot disease were observed in the inner part of the cabbage heads after 7, 9, and/or 10 weeks of cultivation at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures, but not in the cabbage heads growing at ambient temperature. These results show that Chinese cabbage could be negatively affected by high temperature under a future climate change scenario. Therefore, to maintain the high productivity and quality of Chinese cabbage, it may be necessary to develop new high temperature tolerant cultivars or to markedly improve cropping systems. In addition, it would be possible to use the non-invasive fluorescence parameters $F_O$, $F_V/F_M$, and $F_V/F_O$, as well as $F_K$, $M_O$, $S_M$, RC/CS, ETo/CS, $PI_{abs}$, and $SFI_{abs}$ (which were selected in this study), to quantitatively determine the physiological status of plants in response to high temperature stresses.

본 연구는 온도구배터널에서 자라는 배추의 잎에서 광합성적 $CO_2$ 교환과 엽록소형광을 분석함으로써 배추의 생장에 미치는 고온의 영향을 정량적으로 분석하였다. 결구가 형성되기 전의 생육초기에는 대기온도보다 대기온도 $+4^{\circ}C$와 대기온도 $+7^{\circ}C$ 조건에서 생장한 배추가 엽수의 증가와 엽길이의 신장이 두드러지게 나타났다. $CO_2$ 고정률은 대기온도 $+4^{\circ}C$에서 자란 배추의 잎에서 $25.8{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$로 다소 높았으나, 생육 온도에 따라 통계적으로 유의한 차이는 없었다. 반면에 호흡률은 대기온도에서 다소 높았으며 대기온도 $+4^{\circ}C$와 대기온도 $+7^{\circ}C$ 조건에서는 낮았다. 기공전도도와 증산률은 대기온도에서보다 대기온도 $+4^{\circ}C$와 대기온도 $+7^{\circ}C$ 조건에서 증가하고 수분이용효율은 감소하였다. 그리고, OKJIP 곡선의 패턴에서도 상승온도에서 $F_J$, $F_I$, $F_P$가 크게 낮아지고, 고온에서 특이적으로 나타나는 $F_K$의 증가와 $F_V/F_O$값의 감소 등을 확인할 수 있었다. RC/CS는 대조구에 비해 온도가 높아지면 크게 감소하였으며, ABS/CS, TRo/CS와 ETo/CS도 온도가 높아짐에 따라 점차 줄어들었다. 이에 반해 DIo/CS는 온도가 높아짐에 따라 증가하였다. 그리고 대조구인 대기온도에서는 정식 후 7주, 9주, 10주째에 수확한 배추 내부에서 병징이 나타나지 않았으나, 대기온도 $+4^{\circ}C$와 대기온도 $+7^{\circ}C$ 조건에서는 재배기간이 길어질수록 점차 무름병에 의한 피해가 두드러지게 나타났다. 이러한 결과는 급격하게 변화하는 미래의 기후 환경 하에서 배추가 고온 스트레스에 노출될 가능성을 암시하고 있다. 따라서 배추의 안정적인 생산을 위해서는 고온 적응성 품종, 특히 결구 시점에서 내고온성이 강한 품종을 육성하거나 고온의 피해를 최소화할 수 있는 재배기술이 확립되어야 할 것으로 보인다. 그리고 결구형성 시 고온 스트레스의 영향을 조기감별하기 위해서 OKJIP 곡선에서 $F_K$의 증가를 비롯하여 기존에 사용되고 있는 변수인 $F_O$, $F_V/F_M$$F_V/F_O$ 이외에도 $M_O$, $S_M$, RC/CS, ETo/CS, $PI_{abs}$, $SFI_{abs}$ 등의 형광변수들이 유용하게 활용될 수 있을 것으로 보인다.

Keywords

References

  1. Atkin, O.K. and M.G. Tjoelker. 2003. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8:343-351. https://doi.org/10.1016/S1360-1385(03)00136-5
  2. Campbell, C., L. Atkinson, J. Zaragoza-Castells, M. Lundmark, O. Atkin, and V. Hurry. 2007. Acclimation of photosynthesis and respiration is asynchronous in response to change in temperature regardless of plant functional group. New Phytol. 176:375-389. https://doi.org/10.1111/j.1469-8137.2007.02183.x
  3. Carmo-Silva, A.E. and M.E. Salvucci. 2012. The temperature response of $CO_{2}$ assimilation, photochemical activities and rubisco activation in Camelina sativa, a potential bioenergy crop with limited capacity for acclimation to heat stress. Planta 236:1433-1445. https://doi.org/10.1007/s00425-012-1691-1
  4. Chaterjee, A., H. Murata, and J.L. McEvoy. 1994. Global regulation of pectinases and other degradative enzymes in Erwinia carotovora subsp. carotovora, the incident postharvest decay in vegetable. HortScience 29:754-758.
  5. Chen, L.S. and L. Cheng. 2009. Photosystem II is more tolerant to high temperature in apple (Malus domestica Borkh.) leaves than in fruit peel. Photosynthetica 47:112-120. https://doi.org/10.1007/s11099-009-0017-4
  6. Ge, Z.M., X. Zhou, C. Biasi, S. Kellomaki, K.Y. Wang, H. Peltola, and P.J. Martikainen. 2012. Carbon assimilation and allocation ($^{13}C$ labeling) in a boreal perennial grass (Phalaris arundinacea) subjected to elevated temperature and $CO_{2}$ through a growing season. Environ. Exp. Bot. 75:150-158. https://doi.org/10.1016/j.envexpbot.2011.09.008
  7. Guisse, B., A. Srivastava, and R.J. Strasser. 1995. The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat stressed leaves. Arch. Sci. Geneve 48:147-160.
  8. Guo, Y.P., H.F. Zhou, and L.C. Zhang. 2006. Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. Sci. Hort. 108:260-267. https://doi.org/10.1016/j.scienta.2006.01.029
  9. Hadley, P., G.R. Batts, R.H. Ellis, J.I.L. Morison, S. Pearson, and T.R. Wheeler. 1995. Temperature gradient chamber for research on global environment change. II. A twin-wall tunnel system for low-stature, field-grown crops using a split heat pump. Plant Cell Environ. 18:1055-1063. https://doi.org/10.1111/j.1365-3040.1995.tb00617.x
  10. Hayat, S., A. Masood, M. Yusuf, Q. Fariduddin, and A. Ahmad. 2009. Growth of Indian mustard (Brassica juncea L.) in response to salicylic acid under high-temperature stress. Braz. J. Plant Physiol. 21:187-195.
  11. Intergovernmental Panel on Climate Change (IPCC). 2007. Climate change 2007: Mitigation of climate change, contribution of working group III contribution to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, New York, USA.
  12. Kaukoranta, T. 1996. Impact of global warming on potato late blight: Risks, yield loss and control. Agri. Food Sci. Finland 5:311-327.
  13. Kriedemann, P.F., R.D. Graham, and J.T. Wiskich. 1985. Photosynthetic dysfunction and in vivo chlorophyll a fluorescence from manganese-deficient wheat leaves. Aust. J. Agric. Res. 36:157-169. https://doi.org/10.1071/AR9850157
  14. Levitt, J. 1980. Responses of plants to environmental stresses. Vol. 1. Chilling, freezing and high temperature stresses. 2nd ed. Academic Press, New York, USA.
  15. Lu, C. and J. Zhang. 1999. Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. J. Exp. Bot. 50:1199-1206. https://doi.org/10.1093/jxb/50.336.1199
  16. Lu, C.M. and J.H. Zhang. 2000. Heat-induced multiple effects on PS II in wheat plants. J. Plant Physiol. 156:259-265. https://doi.org/10.1016/S0176-1617(00)80315-6
  17. Mathur, S., A. Jajoo, P. Mehta, and S. Bharti. 2011. Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biol. 13:1-6.
  18. Oh, S.J. and S.C. Koh. 2013. Chlorophyll a fluorescence response to mercury stress in the freshwater microalga Chlorella vulgaris. J. Environ. Sci. 22:705-715.
  19. Opena, R.T., C.G. Kuo, and J.Y. Yoon. 1988. Breeding and seed production of Chinese cabbage in the tropics and subtropics. Technical Bul. No. 17. Asian Vegetable Research and Development Center (AVRDC), Shanhua, Taiwan.
  20. Porter, J.R. and M.A. Semenov. 2005. Crop responses to climatic variation. Phil. Trans. R. Soc. B. 360:2021-2035. https://doi.org/10.1098/rstb.2005.1752
  21. Prange, R.K., K.B. McRae, D.J. Midmore, and R. Deng. 1990. Reduction in potato growth at high temperature: Role of photosynthesis and dark respiration. Amer. Potato J. 67:357-369. https://doi.org/10.1007/BF02987277
  22. Silim, S.N., N. Ryan, and D.S. Kubien. 2010. Temperature responses of photosynthesis and respiration in Populus balsamifera L.: Acclimation versus adaptation. Photosynth. Res. 104:19-30. https://doi.org/10.1007/s11120-010-9527-y
  23. Srivastava, A., B. Guisse, H. Greppin, and R.J. Strasser. 1997. Regulation of antenna structural and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim. Biophys. Acta 1320:95-106. https://doi.org/10.1016/S0005-2728(97)00017-0
  24. Strasser, B.J. and R.J. Strasser. 1995. Measuring fast fluorescence transients to address environmental questions: The JIP test, p. 977-980. In: P. Mathis (ed.). Photosynthesis: From light to biosphere. Kluwer Academic, Dordrecht, Netherlands.
  25. Strasser, R.J. 1997. Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth. Res. 52:147-155. https://doi.org/10.1023/A:1005896029778
  26. Strasser, R.J., A. Srivastava, and M. Tsimilli-Michael. 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples, p. 443-480. In: M. Yunus, U. Pathre, and P. Mohanty (eds.). Probing photosynthesis: Mechanisms, regulation and adaptation. Taylor & Francis, London, UK.
  27. Takahashi, S. and N. Murata. 2008. How do environmental stresses accelerate photoinhibition? Trends Plant Sci. 13:178-182. https://doi.org/10.1016/j.tplants.2008.01.005
  28. Tjoelker, M.G., P.B. Reich, and J. Oleksyn. 1999. Changes in leaf nitrogen and carbohydrates underlie temperature and $CO_{2}$ acclimation of dark respiration in five boreal tree species. Plant Cell Environ. 22:767-778. https://doi.org/10.1046/j.1365-3040.1999.00435.x
  29. Yan, K., P. Chen, H. Shao, S. Zhao, L. Zhang, L. Zhang, G. Xu, and J. Sun. 2012. Responses of photosynthesis and photosystem II to higher temperature and salt stress in sorghum. J. Agron. Crop Sci. 198:218-225. https://doi.org/10.1111/j.1439-037X.2011.00498.x
  30. Yang, K.A., C.J. Lim, J.K. Hong, C.Y. Park, Y.H. Cheong, W.S. Chung, K.O. Lee, S.Y. Lee, M.J. Cho, and C.O. Lim. 2006. Identification of cell wall genes modified by a permissive high temperature in Chinese cabbage. Plant Sci. 171:175-182. https://doi.org/10.1016/j.plantsci.2006.03.013
  31. Yoshioka, M., S. Uchiba, H. Mori, K. Komayama, S. Ohira, N. Morita, T. Nakanish, and Y. Yamamoto. 2006. Quality control of photosystem II: Cleavage of reaction center D1 protein in spinach thylakoids by FtsH protease under moderate heat stress. J. Biol. Chem. 281:21660-21669. https://doi.org/10.1074/jbc.M602896200
  32. Zushi, K., S. Kajiwara, and N. Matsuzoe. 2012. Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit. Sci. Hortic. 148:39-46. https://doi.org/10.1016/j.scienta.2012.09.022

Cited by

  1. Impact of Elevating Temperature Based on Climate Change Scenarios on Growth and Fruit Quality of Red Pepper (Capsicum annuum L.) vol.17, pp.3, 2015, https://doi.org/10.5532/KJAFM.2015.17.3.248
  2. Effects of Differentiated Temperature Based on Growing Season Temperature on Growth and Physiological Response in Chinese Cabbage 'Chunkwang' vol.17, pp.3, 2015, https://doi.org/10.5532/KJAFM.2015.17.3.254
  3. A Thermal Time - Based Phenology Estimation in Kimchi Cabbage (Brassica campestris L. ssp. pekinensis) vol.17, pp.4, 2015, https://doi.org/10.5532/KJAFM.2015.17.4.333
  4. Effects of Vernalization, Temperature, and Soil Drying Periods on the Growth and Yield of Chinese Cabbage vol.33, pp.6, 2015, https://doi.org/10.7235/hort.2015.15076
  5. Assessment of High Temperature Impacts on Early Growth of Garlic Plant (Allium sativum L.) through Monitoring of Photosystem II Activities vol.33, pp.6, 2015, https://doi.org/10.7235/hort.2015.15078
  6. Impacts of climate change on the growth, morphological and physiological responses, and yield of Kimchi cabbage leaves vol.57, pp.5, 2016, https://doi.org/10.1007/s13580-016-1163-9
  7. Optimizing growth conditions for glucosinolate production in Chinese cabbage vol.59, pp.5, 2018, https://doi.org/10.1007/s13580-018-0084-1
  8. 생육기 온도상승이 고추의 생육 및 과실품질에 미치는 영향 vol.16, pp.4, 2014, https://doi.org/10.5532/kjafm.2014.16.4.349
  9. 생육기 온도상승이 극조생 양파의 생육 및 구 비대에 미치는 영향 vol.19, pp.4, 2014, https://doi.org/10.5532/kjafm.2017.19.4.223
  10. 생육도일(GDDs)에 따른 '춘광' 봄배추의 적정 재배 작기 예측 vol.20, pp.2, 2014, https://doi.org/10.5532/kjafm.2018.20.2.175
  11. 온도구배터널 내 상승온도에 의한 난지형 마늘(Allium sativum L.)의 광합성 및 생육 특성의 변화 vol.21, pp.4, 2014, https://doi.org/10.5532/kjafm.2019.21.4.250
  12. NaCl 처리가 고들빼기의 생장과 생리적 특성에 미치는 영향 vol.28, pp.1, 2014, https://doi.org/10.7783/kjmcs.2020.28.1.1
  13. 엽록소형광을 이용한 한지형 잔디 3종의 하절기 활력도 비교 분석 vol.30, pp.7, 2021, https://doi.org/10.5322/jesi.2021.30.7.547
  14. Growth and Physiological Responses of Four Plant Species to Different Sources of Particulate Matter vol.24, pp.5, 2014, https://doi.org/10.11628/ksppe.2021.24.5.461