DOI QR코드

DOI QR Code

Electrochemical Characteristics of Silicon-carbon Composite Anodes for Lithium Rechargeable Batteries

  • Lee, Jaeho (Department of Nano & Chemical Engineering, Kunsan National University) ;
  • Won, Sora (Department of Nano & Chemical Engineering, Kunsan National University) ;
  • Shim, Joongpyo (Department of Nano & Chemical Engineering, Kunsan National University) ;
  • Park, Gyungse (Department of Chemistry, Kunsan National University) ;
  • Sun, Ho-Jung (Department of Materials Science & Engineering, Kunsan National University) ;
  • Lee, Hong-Ki (Fuel Cell Regional Innovation Center, Woosuk University)
  • Received : 2013.10.04
  • Accepted : 2014.06.02
  • Published : 2014.08.25

Abstract

Si-carbon composites as anode materials for lithium rechargeable batteries were prepared simply by mixing Si nanoparticles with carbon black and/or graphite through a solution process. Si nanoparticles were well dispersed and deposited on the surface of the carbon in a tetrahydrofuran solution. Si-carbon composites showed more than 700 mAh/g of initial capacity under less than 20% loading of Si nanoparticle in the composites. While the electrode with only Si nanoparticles showed fast capacity fading during continuous cycling, Si-carbon composite electrodes showed higher capacities. The cycle performances of Si nanoparticles in composites containing graphite were improved due to the role of the graphite as a matrix.

Keywords

References

  1. J. O. Besenhard, J. Yang, M.Winter, J. Power Sources, 68 , 87 (1997) [DOI: http://dx.doi.org/10.1016/S0378-7753(96)02547-5].
  2. U. Kasavajjula, C. Wang, A.J. Appleby, J. Power Sources, 163, 1003 (2007) [DOI: http://dx.doi.org/10.1016/j.jpowsour.2006.09.084].
  3. H. Kim, B. Han, J. Choo, J. Cho, Angew. Chem. Int. Ed., 47, 10151 (2008) [DOI: http://dx.doi.org/10.1002/anie.200804355].
  4. J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J.Y. Xie, O. Yamamoto, Solid State Ionics, 152, 125 (2002) [DOI: http://dx.doi.org/10.1016/S0167-2738(02)00362-4].
  5. C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui, Nature Nanotech., 3, 31 (2008) [DOI: http://dx.doi.org/10.1038/nnano.2007.411].
  6. J. Graetz, C. C. Ahn, R. Yazami, B. Fultz, Electrochem. Solid-State Lett. , 6, A194 (2003) [DOI: http://dx.doi.org/10.1149/1.1596917].
  7. M. L. Ostraat, H. A. Atwater, R. C. Flagan, J. Colloid Interface Science, 283, 414 (2005) [DOI: http://dx.doi.org/10.1016/j.jcis.2004.09.032].
  8. J. H. Warner, A. Hoshino, K. Yamamoto, R.D. Tilley, Angew. Chem. Int. Ed., 44, 4550 (2005) [DOI: http://dx.doi.org/10.1002/anie.200501256].
  9. M. Yoshio, T. Tsumura, N. Dimov, J. Power Sources, 163, 215 (2006) [DOI: http://dx.doi.org/10.1016/j.jpowsour.2005.12.078].
  10. J.-H Lee, W-J Kim, J-Y Kim, S-H Lim, S-M Lee, J. Power Sources, 176, 353 (2008) [DOI: http://dx.doi.org/10.1016/j.jpowsour.2007.09.119].
  11. J. Shim, K.A. Striebel, J. Power Sources, 164, 862 (2007) [DOI: http://dx.doi.org/10.1016/j.jpowsour.2006.09.111].
  12. B. Fuchsbichler, C. Stangl, H. Kren, F. Uhlig, S. Koller, J. Power Sources, 196, 2889 (2011) [DOI: http://dx.doi.org/10.1016/j.jpowsour.2010.10.081].
  13. M. Holzapfel, H. Buqaa, L.J. Hardwick, M. Hahn, A. Wursig, W. Scheifele, P. Novak, R. Kotz, C. Veit, F.-M. Petrat, Electrochim. Acta, 52, 973 (2006) [DOI: http://dx.doi.org/10.1016/j.electacta.2006.06.034].
  14. H. Kim, M. Seo, M.-H. Park, J. Cho, Angew. Chem. Int. Ed., 49, 2146 (2010) [DOI: http://dx.doi.org/10.1002/anie.200906287].
  15. H. Ma, F. Cheng, J. Chen, J. Zhao, C. Li, Z. Tao, J. Liang, Adv. Mater., 19, 4067 (2007) [DOI: http://dx.doi.org/10.1002/adma.200700621].
  16. Y. Kwon, G.-S. Park, J. Cho, Electrochim. Acta, 52, 4663 (2007) [DOI: http://dx.doi.org/10.1016/j.electacta.2007.01.077].
  17. T. Ohzuku, Y. Iwakoshi and K. Sawai, J. Electrochem. Soc., 140, 2496 (1993).
  18. J. Graetz, C.C. Ahn, R. Yazami, B. Fultz, Electrochem. Solid-State Lett. , 6, A194 (2003) [DOI: http://dx.doi.org/10.1149/1.1596917].
  19. Z. P. Guo, J. Z. Wang, H. K. Liu, S. X. Dou, J. Power Sources, 146, 448 (2005) [DOI: http://dx.doi.org/10.1016/j.jpowsour.2005.03.112].
  20. H. Li, X. Huang, L. Chen, Z.Wu, Y. Liang, Electrochem. Solid State Lett., 2, 547 (1999) [DOI: http://dx.doi.org/10.1149/1.1390899].
  21. B. Koo, H. Kim, Y. Cho, K.T. Lee, N.-S. Choi, J. Cho, Angew. Chem. Int. Ed., 51, 1 (2012) [DOI: http://dx.doi.org/10.1002/anie.201106864].
  22. N. Ding, J. Xu, Y. Yao, G. Wegner, I. Lieberwirth, C. Chen, J. Power Sources, 192, 644 (2009) [DOI: http://dx.doi.org/10.1016/j.jpowsour.2009.03.017].
  23. P. Zuo, G. Yin, Y. Ma, Electrochim. Acta, 52, 4878 (2007) [DOI: http://dx.doi.org/10.1016/j.electacta.2006.12.061].
  24. Z.S. Wen, J. Yang, B.F. Wang, K. Wang, Y. Liu, Electrochem. Comm., 5, 165 (2003) [DOI: http://dx.doi.org/10.1016/S1388-2481(03)00009-2].

Cited by

  1. The Effect of Barrier Layer on Thin-film Silicon Solar Cell Using Graphite Substrates vol.29, pp.8, 2016, https://doi.org/10.4313/JKEM.2016.29.8.505