DOI QR코드

DOI QR Code

Electrical Properties of (Ba,Ca)(Ti,Zr)O3 Ceramics for Bimorph-type Piezoelectric Actuator

  • Shin, Sang-Hoon (Department of Electrical Engineering, Semyung University) ;
  • Yoo, Ju-Hyun (Department of Electrical Engineering, Semyung University)
  • Received : 2014.05.07
  • Accepted : 2014.06.10
  • Published : 2014.08.25

Abstract

In this study, lead-free $(Ba_{0.85}Ca_{0.15})(Ti_{1-x}Zr_x)O_3$ ceramics and a bimorph-type piezoelectric actuator were fabricated using the normal oxide-mixed sintering method, and their dielectric properties, microstructure, and displacement properties were investigated. From the results of X-ray diffraction, the pattern of the specimen has a pure perovskite structure. In addition, no secondary impurity phases were found. The excellent piezoelectric coefficient of $d_{33}=454pC/N$, the electromechanical coupling factor $k_p=0.51$, the dielectric constant ${\varepsilon}_r=3,657$, the mechanical quality factor $Q_m=239$, and $T_c$(Tetragonal-Cubic) =$90^{\circ}C$ were shown at x= 0.085. ${\Delta}k_p/k_p20^{\circ}C$ and ${\Delta}f_r/f_r20^{\circ}C$ showed the maximum value of -0.255 and 0.111 at $-20^{\circ}C$ and $80^{\circ}C$, respectively. The maximum total-displacement was $60{\mu}m$ under the input voltage of 50 V. As a result, it is considered that lead-free $(Ba_{0.85}Ca_{0.15})(Ti_{1-x}Zr_x)O_3$ ceramics is a promising candidate for piezoelectric actuator application for x= 0.085.

Keywords

References

  1. W. Jiagang, X. Dingquan, W. Wenjun, C. Qiang, Z. Jianguo, Y. Zhengchun and W. John, Scripta Mater., 65, 771 (2011). https://doi.org/10.1016/j.scriptamat.2011.07.028
  2. B. Sunmin and Y. Juhyun, Jpn. J. Appl. Phys., 51, 09MD02 (2012). https://doi.org/10.7567/JJAP.51.09MD02
  3. W. Jiagang, X. Dingquan, W. Bo, W. Wenjuan, Z. Jianguo, Y. Zhengchun, W. John, Mater. Res. Bull., 47, 1281 (2012). https://doi.org/10.1016/j.materresbull.2012.01.032
  4. Q. Sha, W. Jiagang, W. Bo, Z. Binyu, X. Dingquan, Z. Jianguo, Ceram. Int., 38, 4845 (2012). https://doi.org/10.1016/j.ceramint.2012.02.074
  5. Y. Shukai, F. Jerry, L. Li, J. Alloy Com., 541, 396 (2012). https://doi.org/10.1016/j.jallcom.2012.06.084
  6. P. Minho and J. H. Yoo, Journal of Elec. Mater., 30, 3095 (2012).
  7. J. R. Noh, and J. H. Yoo, J Electroceram, 30, 139 (2012).
  8. Y. Saito, H. Takkao, T. Tani,T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004). https://doi.org/10.1038/nature03028
  9. L. Wenfeng, R. Xiaobing, Phys. Rev. Lett., 103, 257602 (2009). https://doi.org/10.1103/PhysRevLett.103.257602
  10. M. H. Park, J. H. Yoo, and Y. W. Park, J Eletroceram, 30, 66 (2013). https://doi.org/10.1007/s10832-012-9720-9
  11. W. Jiagang, X. Dingquan, W. Wenjuan, Z. Jianguo, and W. John, J. Alloy Com., 509, L359 (2011). https://doi.org/10.1016/j.jallcom.2011.08.024
  12. Y. K. Oh and J. H. Yoo, Mater. Lett., 79, 180 (2012). https://doi.org/10.1016/j.matlet.2012.04.010
  13. Z. Suwei, Z. Hailong, Z. Boping, Z. Gaolei, J. Eur. Ceram. Soc., 29, 3235 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.06.034
  14. X. P. Jiang, L. Li, C. Chen, X. J. Wang, and X. H. Li, J. Alloy Com., 574, 88 (2013). https://doi.org/10.1016/j.jallcom.2013.04.048
  15. J. Wu, A. Habibul, X. Cheng, X. Wang, and B. Zhang, Mater. Res. Bull., 48, 4411 (2013). https://doi.org/10.1016/j.materresbull.2013.06.035
  16. J. Wu, D. Xiao, W. Wu, Q. Chen, J. Zhu, Z. Yang, and J. Wang, J. Eur. Ceram. Soc., 32, 891 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.11.003
  17. G. John, L. Daegi, O. Jeonghyeon, K. Hanul, N. Dieu, K. Jeehoon, L. Jongsook, L. Hoyong, J. Korean. Phys., 50, 157 (2013).

Cited by

  1. Tailoring Low-field Strain Properties of [0.97Bi1/2(Na0.78K0.22)1/2TiO3-0.03LaFeO3]-Bi1/2(Na0.82K0.18)1/2TiO3Lead-Free Relaxor/Ferroelectric Composites vol.29, pp.6, 2016, https://doi.org/10.4313/JKEM.2016.29.6.342