DOI QR코드

DOI QR Code

Effects of Cr Content in Amorphous Ribbons $(Fe_{0.79}C_{0.11}Si_{0.02}B_{0.08})_{100-x}Cr_x$ on Their Corrosion Resistance

철계 비정질 리본 $(Fe_{0.79}C_{0.11}Si_{0.02}B_{0.08})_{100-x}Cr_x$의 부식거동에 미치는 Cr의 영향

  • Kim, Munjeong (Department of Materials science and Metallurgical Engineering, Kyungpook National University) ;
  • Kim, Sang-Won (Ferrous Amorphous Alloys Research Project, Research Institute of Industrial Science & Technology) ;
  • Yoon, Sang-Hoon (Ferrous Amorphous Alloys Research Project, Research Institute of Industrial Science & Technology) ;
  • Yi, Seonghoon (Department of Materials science and Metallurgical Engineering, Kyungpook National University)
  • 김문정 (경북대학교 신소재공학부) ;
  • 김상원 (포항산업과학연구원 비정질소재연구단) ;
  • 윤상훈 (포항산업과학연구원 비정질소재연구단) ;
  • 이승훈 (경북대학교 신소재공학부)
  • Received : 2013.04.15
  • Published : 2014.02.25

Abstract

To development of anti-corrosive Fe-alloys with a high carbon content, we designed an amorphous alloy in the alloy system Fe-C-Si-B-Cr. In the $(Fe_{0.79}C_{0.11}Si_{0.02}B_{0.08})_{100-x}Cr_x$ (x = 2, 4, 6, 8 at%) ribbon with a thickness of less than $25{\mu}m$, an amorphous phase was formed without Cr carbide formation. As the Cr content increased, the corrosion resistance in the 3.5 wt% NaCl and 1 N $H_2SO_4$ solutions monotonically increased, exhibiting an abrupt increase when the Cr content was higher than 6 at% (for the NaCl solution) and 8 at% (for the $H_2SO_4$ solution). From the corrosion test results for the fully amorphous and partially crystallized ribbons with high Cr content (i.e., 8 at%), we demonstrate that, even with a high Cr content, the homogeneous spatial distribution of Cr and the absence of microstructural defects in the ribbon are critical to significantly enhance the corrosion resistance of the high Cr ribbon.

Keywords

Acknowledgement

Supported by : 포항산업과학연구원(RIST)

References

  1. M. Belkhaouda, L. Bazzi, A. Benlhachemi, R. Salghi, B. Hammouti, and S. Kertit, Appl. Surf. Sci. 252, 7921 (2006). https://doi.org/10.1016/j.apsusc.2005.09.063
  2. I. S. Hwang and S. H. Yi, J. Kor. Inst. Met. & Mater. 44, 639 (2006).
  3. J. R. Scully, A. Gebert, and J. H. Payer, J. Mater. Res. 22, 302 (2007). https://doi.org/10.1557/jmr.2007.0051
  4. S. S. Shin, C. M. Lee, J. W. Yang, and J. C. Lee, J. Kor. Inst. Met. & Mater. 46, 53 (2008).
  5. S. L. Wang, H. X. Li, X. F. Zhang, and S. Yi, Mater. Chem. Phys. 113, 878 (2009). https://doi.org/10.1016/j.matchemphys.2008.08.057
  6. S. L. Wang, H. X. Li, S. Y. Hwang, S. D. Choi, and S. Yi, Met. Mater. Int. 18, 607 (2012). https://doi.org/10.1007/s12540-012-4006-y
  7. V. Cihal and I. Kasova, Corros. Sci. 10, 875 (1970). https://doi.org/10.1016/S0010-938X(70)80106-8
  8. M. Matula, L. Hyspecka, M. Svoboda, V. Vodarek, C. Dagbert, J. Galland, Z. Stonawska, and L. Tuma, Mat. Charact. 46, 203 (2001). https://doi.org/10.1016/S1044-5803(01)00125-5
  9. Y. S. Choi, J. G. Kim, Y. S. Park, and J. Y. Park, Mater. Lett. 61, 244 (2010).
  10. S. Jain, N. D. Budiansky, J. L. Hudson, and J. R. Scully, Corros. Sci. 52, 873, (2010).
  11. S. K. Kim, J. H. Lee, and D. B. Lee, Korean J. Met. Mater. 50, 361 (2012).