DOI QR코드

DOI QR Code

Interfacial Characteristics of TiN Coatings on SUS304 and Silicon Wafer Substrates with Pulsed Laser Thermal Shock

  • Seo, Nokun (School of Materials Science and Engineering, Pusan National University) ;
  • Jeon, Seol (School of Materials Science and Engineering, Pusan National University) ;
  • Choi, Youngkue (School of Materials Science and Engineering, Pusan National University) ;
  • Jeon, Min-Seok (Material Testing Center, Korea Testing Laboratory) ;
  • Shin, Hyun-Gyoo (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Heesoo (School of Materials Science and Engineering, Pusan National University)
  • Received : 2013.05.20
  • Published : 2014.01.25

Abstract

TiN coatings prepared on different substrates that had different coefficients of thermal expansion were subjected to pulsed laser thermal shock and observed by using FIB milling to compare the deterioration behaviors. TiN coating on SUS304, which had a larger CTE (${\sim}17.3{\times}10^{-6}/^{\circ}C$) than the coating was degraded with pores and cracks on the surface and showed significant spalling of the coating layer over a certain laser pulses. TiN coating on silicon wafer with a smaller CTE value, ${\sim}4.2{\times}10^{-6}/^{\circ}C$, than the coating exhibited less degradation of the coating layer at the same ablation condition. Cracks propagated at the interface were observed in the coating on the silicon wafer, which induced a compressive stress to the coating. The coating on the SUS304 showed less interface cracks while the tensile stress was applied to the coating. Delamination of the coating layer related to the intercolumnar cracks at the interface was observed in both coatings through bright-field TEM analysis.

Keywords

References

  1. S. Boelens and H. Veltrop, Surf. Coat. Technol. 33, 63 (1987). https://doi.org/10.1016/0257-8972(87)90177-0
  2. S. M. Lee, T. Y. Seong, W. S. Lee, Y. J. Baik, and J. K. Park, Met. Mater. Int. 19, 591 (2013). https://doi.org/10.1007/s12540-013-3031-9
  3. T. Ikeda and H. Satoh, Thin Solid Films 195, 99 (1991). https://doi.org/10.1016/0040-6090(91)90262-V
  4. H. G. Prengel, P. C. Jindal, K. H. Wendt, A. T. Santhanam, P. L. Hegde, and R. M. Penich, Surf. Coat. Technol. 139, 25 (2001). https://doi.org/10.1016/S0257-8972(00)01080-X
  5. P. C. Jindal, A. T. Santhanam, U. Schleinkofer, and A. F. Shuster, Int. J. Refract. Met. Hard Mat. 17, 163 (1999). https://doi.org/10.1016/S0263-4368(99)00008-6
  6. M. Moriyama, T. Kawazoe, M. T. anaka, and M. Murakami, Thin Solid Films 416, 136 (2002). https://doi.org/10.1016/S0040-6090(02)00602-8
  7. J. H. Zhao, W. J. Qi, and P. S. Ho, Microelectron. Reliab. 42, 27 (2002). https://doi.org/10.1016/S0026-2714(01)00121-4
  8. A. Karimi, O. R. Shojaei, T. Kruml, and J. L. Martin, Thin Solid Films 308, 334 (1997).
  9. S. Bhowmick, A. N. Kale, V. Jayaram, and S. K. Biswas, Thin Solid Films 436, 250 (2003). https://doi.org/10.1016/S0040-6090(03)00598-4
  10. J. Haider, M. Rahman, B. Corcoran, and M. S. J. Hashmi, J. Mater. Process. Technol. 168, 36 (2005). https://doi.org/10.1016/j.jmatprotec.2004.09.093
  11. F. H. Lu, S. P. Feng, H. Y. Chen, and J. K. Li, Thin Solid Films 375, 123 (2000). https://doi.org/10.1016/S0040-6090(00)01225-6
  12. S. V. Hainsworth and W. C. Soh, Surf. Coat. Technol. 163, 515 (2003).
  13. J. H. Huang, C. Y. Hsu, S. S. Chen, and G. P. Yu, Mater. Chem. Phys. 77, 14 (2002).
  14. M. Shima, J. Okado, I. R. McColl, R. B. Waterhouse, T. Hasegawa, and M. Kasaya, Wear 225, 38 (1999).
  15. C. M. Suh, B. W. Hwang, and R. I. Murakami, Mater. Sci. Eng. A 343, 1 (2003). https://doi.org/10.1016/S0921-5093(02)00327-1
  16. C. Kirchlechner, K. J. Martinschitz, R. Daniel, M. Klaus, C. Genzel, C. Mitterer, and J. Keckes, Thin Solid Films 518, 2090 (2010). https://doi.org/10.1016/j.tsf.2009.08.011
  17. U. Wiklund, J. Gunnars, and S. Hogmark, Wear 232, 262 (1999). https://doi.org/10.1016/S0043-1648(99)00155-6
  18. C. Mitterer, F. Holler, F. Ü stel, and D. Heim, Surf. Coat. Technol. 125, 233 (2000). https://doi.org/10.1016/S0257-8972(99)00557-5
  19. C. M. D. Starling and J. R. T. Branco, Thin Solid Films 308, 436 (1997).
  20. Y. K. Choi, S. Jeon, M. S. Jeon, H. G. Shin, H. H. Chun, Y. S. Lee, and H. S. Lee, App. Surf. Sci. 258, 8752 (2012). https://doi.org/10.1016/j.apsusc.2012.05.086
  21. T. M. Noh, Y. K. Choi, M. S. Jeon, H. G. Shin, and H. S. Lee, Korean J. Met. Mater. 50, 539 (2012).
  22. S. Y. Yoon, K. O. Lee, S. S. Kang, and K. H. Kim, J. Mater. Process. Technol. 130, 260 (2002).
  23. Richard Wirth, Chem. Geol. 261, 217 (2009). https://doi.org/10.1016/j.chemgeo.2008.05.019
  24. P. R. Munroe, Mater. Charact. 60, 2 (2009). https://doi.org/10.1016/j.matchar.2008.11.014
  25. J. M. Cairney, S. G. Harris, P. R. Munroe, and E. D. Doyle, Surf. Coat. Technol. 183, 239 (2004). https://doi.org/10.1016/j.surfcoat.2003.09.058
  26. M. S. Trtica, B. M. Gakovic, L. T. Petkovska, V. F. Tarasenko, A. V. Fedenev, E. I. Lipatov, and M. A. Shulepov, App. Surf. Sci. 225, 362 (2004). https://doi.org/10.1016/j.apsusc.2003.10.048
  27. L. Qi, K. Nishii, M. Yasui, H. Aoki, and Y.Namba, Opt. Lasers Eng. 48, 1000 (2010). https://doi.org/10.1016/j.optlaseng.2010.05.006