DOI QR코드

DOI QR Code

Uplift Resistance of Wooden Pile using Soil box According to Soil type

흙의 종류에 따른 모형토조를 이용한 나무말뚝의 인발저항력 비교 분석

  • Kang, Yun-Seok (Dept. of Agricultural & RuralEngineering Chungbuk Nat Univ.) ;
  • Yoon, Yong-Cheol (Dept. of Agricultural Eng., Gyeongsang National Univ.(Institute of Agriculture & Life Science, GNU)) ;
  • Song, Chang-Seob (Dept. of Agricultural & RuralEngineering Chungbuk Nat Univ.) ;
  • Lim, Seong-Yoon (Dept. of Agricultural & RuralEngineering Chungbuk Nat Univ.)
  • 강윤석 (충북대학교 지역건설공학과) ;
  • 윤용철 (경북대학교 지역환경기반공학과(농업생명과학연구원)) ;
  • 송창섭 (충북대학교 지역건설공학과) ;
  • 임성윤 (충북대학교 지역건설공학과)
  • Received : 2013.11.01
  • Accepted : 2014.02.06
  • Published : 2014.02.28

Abstract

Pile foundations are normally constructed to support an overburden load with its bearing capacity at the tip of pile, and friction along the pile shaft. Pile foundations of offshore structure, transmission tower, tall building, and water tank are sometimes suffered from horizontal load as well as normal load, and hence pull-out forces are subjected to the pile foundation. Until recently, research works on uplift capacity of a pile have usually been constrained to PHC and still pipe on the clay soil or sand soil. Moreover, evaluation of uplift capacity of a pile foundation in the weathered granite soil which is predominated in Korean Peninsula has never been studied. Reclaimed land have used mainly farm land, but recently it is use to farm land as well greenhouse complex. So there is a rising interest on the geotechnical engineering. In case of green house construction on the reclaimed land, it is need a review for the uplift resistance and settlement of foundation, because reclaimed land is soft ground and closed to beach and have a possibility of high risk for strong winds and the settlement of green house. The object of this study is to arrange standard on the design, construction and management for the reclaimed land. The soil box used to sandy soil(SM) and clay(ML). Also, it is change the diameter and embedment depth of timber piles.

본 연구에서는 사질토와 점성토의 인발저항의 관계를 파악하고, 나무말뚝의 직경 근입깊이, 직경과 근입깊이에 따른 근입비의 변화에 따라 인발저항력의 상관관계를 연구하고자한다. 그리하여 간척지 지반 특성인 점성토 지반 위 적당한 나무말뚝의 직경과 근입깊이, 근입비를 통하여 최적의 나무말뚝의 제원을 결정하고자 한다. SM과 ML로 이루어진 두 지반조건의 다짐률을 70 %로 동일하게 하여 말뚝의 인발저항력을 측정하였다. 직경과 근입깊이를 동일하게 하였을 때 ML 지반의 값이 더욱 크게 나오는 것을 보아 인발저항력은 점착력의 영향을 크게 받는다는 것을 알 수 있다. 또한 각 지반에 대해서 동일한 직경에 대한 근잎깊이 를 달리하여 말뚝의 인발저항을 측정하였을 때, 근입깊이가 깊을 수로 인발저항력의 크기가 비례하였다. 말뚝의 인발저항력은 주면면적이 클수록 증가하는 것으로 나타났다. 말뚝의 직경을 일정하고 근입깊이를 달리한 경우에는 근입깊이가 증가함에 따라 인발저항력은 증가하는 것으로 나타났다. 그러나, 직경이 일정하지 않은 경우 근입비 만을 고려하였을 때, 인발저항력과의 관계는 불규칙한 것으로 나타났다.

Keywords

Acknowledgement

Supported by : 농촌진흥청

References

  1. Bhushan, K., 1982. Discussion: New Design Correlations for Piles in Sands., Journal of Geotechnical Engineering Division., ASCE, GT 11, Nov., pp. 1508-1510.
  2. Bjerrum, L. 1972. Embankments on Soft Ground, Proc. ASCE Specialty Conference on Earth and Earth-Supported Structures., Purdue University. Vol.2, pp.1-54, 1972.
  3. Burland, J. B. 1973. "Shaft Friction on Piles in Clay-A Simple Fundamental Approach", Ground Engeering, Vol. 6, No. 3, pp. 30-42.
  4. Chattopadhyay B. C., Pise P. J. 1986. Uplift capacity of piles in sand., J Geotech Eng Div 112(9):888-904. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:9(888)
  5. Coyle H. M., and Castello, R. R. 1981. New Design Correlations for Piles on Sand., Journal of the Geotechnical Engineering Division, ASCE, Vol. 106 No. GT7, pp. 965-986.
  6. Das B. M. 1983. A procedure for estimation of uplift capacity of rough piles., Soils Found 23(3):122-126. https://doi.org/10.3208/sandf1972.23.3_122
  7. James G. Collin. 2002. Timber Pile Design and Construction Manual., Timber Piling Council American Wood Preservers Institute.
  8. Jardine, R. J. and F. C. Chow. 1996. New design methods for offshore piles., Report MTD 96/103, Marine Technology Directorate Report, London, UK.
  9. Kulhawy, F. H. and Mayne, P. W. 1990. Manual on Estimating Soil Properties for Foundation Design., Electric Power Research Institute, EPRI EL-6800, Project 1493-6 Final Report.
  10. Lee, Y. H., Kwon, O. K., Kim, M. M. 1993. Determination of Uplift Capacity of Pile in Sand., KSCE Vol. 13 No. 2, pp.229-235.
  11. Meyerhof, G. G. 1956. Penetration tests and bearing capacity of cohesionlesssoils., Proceedings ASCE, Vol.82, No.SM1, Paper866, pp.1-19.
  12. Meyerhof, G. G. and Adams, J. I. 1968. The Ultimate Uplift Capacity of Foundations., Canadian Geotechnical Jounal, Vol. 5, No 4, pp.225-244. https://doi.org/10.1139/t68-024
  13. Yoon, Y. C., Yoon, C. S., Suh, W. M. 1998. An Experimental study on the uplift capacity of cylindrical concrete foundations for pipe frame greenhouse, KSAE Vol. 40, No. 4, pp.109-119.

Cited by

  1. 간척지 온실기초 나무말뚝의 인발저항력 예측을 위한 실내모형시험 결과 비교·분석 vol.58, pp.2, 2014, https://doi.org/10.5389/ksae.2016.58.2.045