DOI QR코드

DOI QR Code

High-Yield Etching-Free Transfer of Graphene: A Fracture Mechanics Approach

  • Received : 2014.05.16
  • Accepted : 2014.06.23
  • Published : 2014.06.30

Abstract

Transfer is the critical issue of producing high-quality and scalable graphene electronic devices. However, conventional transfer processes require the removal of an underlying metal layer by wet etching process, which induces significant economic and environmental problems. We propose the etching-free mechanical releasing of graphene using polymer adhesives. A fracture mechanics approach was introduced to understand the releasing mechanism and ensure highyield process. It is shown that the thickness of adhesive and target substrate affect the transferability of graphene. Based on experimental and fracture mechanics simulation results, we further observed that compliant adhesives can reduce the adhesive stress during the transfer, which also enhances the success probability of graphene transfer.

Keywords

References

  1. A. K. Geim and K. S. Novoselov, "The rise of graphene", Nature Materials., 6(3), 183 (2007). https://doi.org/10.1038/nmat1849
  2. S. K. Bae, H. K. Kim, Y. B. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong and S. Iijima, "Roll-to-roll production of 30-inch graphene films for transparent electrodes", Nature Nanotechnology., 5, 574 (2010). https://doi.org/10.1038/nnano.2010.132
  3. J. S. Bunch, A. M. van der Zande1, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead and P. L. McEue, "Electromechanical Resonators from Graphene Sheets", Science., 315(5811), 490 (2007). https://doi.org/10.1126/science.1136836
  4. S. S. Roy and M. S. Arnold, "Improving Graphene Diffusion Barriers via Stacking Multiple Layers and Grain Size Engineering", Advanced Functional Materials., 23(29), 3638 (2013). https://doi.org/10.1002/adfm.201203179
  5. F. Schwierz, "Graphene transistors", Nature nanotechnology 5(7), 487 (2010). https://doi.org/10.1038/nnano.2010.89
  6. A. Reina, X. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition", Nano Lett., 9(1), 30 (2008).
  7. X. Li, W. Cai1, J. H. An, S. Y. Kim, J. H. Nah, D. Yang, R. Piner, A. Velamakanni, I. H. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, "Large-Area Synthesis of High- Quality and Uniform Graphene Films on Copper Foils", Science., 324(5932), 1312 (2009). https://doi.org/10.1126/science.1171245
  8. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes", Nature., 457(7230), 706 (2009). https://doi.org/10.1038/nature07719
  9. S. Chen, L. Brown, M. Levendorf, W. Cai , S.-Y. Ju, J. Edgeworth, X. Li, C. W. Magnuson, A. Velamakanni, R. D. Piner, J. Y. Kang, J. W. Park and R. S. Ruoff, "Oxidation resistance of graphene-coated Cu and Cu/Ni alloy", ACS nano., 5(2), 1321 (2011). https://doi.org/10.1021/nn103028d
  10. S.-E. Zhu, R. Shabani, J. Rho, Y. Kim, B. H. Hong, J.-H. Ahn and H. J. Cho, "Graphene-based bimorph microactuators", Nano letters., 11(3), 977 (2011). https://doi.org/10.1021/nl103618e
  11. L. G. Martins, Y. Song, T. Zeng, M. S. Dresselhaus, J. Kong and P. T. Araujo, "Direct transfer of graphene onto flexible substrates", Proceedings of the National Academy of Sciences of the United States of America., 110(44), 17762 (2013). https://doi.org/10.1073/pnas.1306508110
  12. J. Song, F.-Y. Kam, R.-Q. Png, W.-L. Seah, J.-M. Zhuo, G.- K. Lim, P. K. H. Ho and L.-L. Chua, "A general method for transferring graphene onto soft surfaces", Nature Nanotechnology., 8(5), 356-362 (2013). https://doi.org/10.1038/nnano.2013.63
  13. D. Y. Wang, I. S. Huang, P. H. Ho, S. S. Li, Y. C. Yeh, D. W. Wang, W. L. Chen, Y. Y. Lee, Y. M. Chang, C. C. Chen, C. T. Liang and C. W. Chen, "Clean-Lifting Transfer of Large-area Residual-Free Graphene Films", Advanced Materials., 25(32), 4521 (2013). https://doi.org/10.1002/adma.201301152
  14. J. Kang, S. Hwang, J. H. Kim, M. H. Kim, J. Ryu, S. J. Seo, B. H. Hong, M. K. Kim and J. B. Choi, "Efficient Transfer of Large-Area Graphene Films onto Rigid Substrates by Hot Pressing", ACS nano., 6(6), 5360 (2012). https://doi.org/10.1021/nn301207d
  15. V. P. Verma, S. Das, I. Lahiri and W. Choi, "Large-area graphene on polymer film for flexible and transparent anode in field emission device", Applied Physics Letters., 96(20), 203108 (2010). https://doi.org/10.1063/1.3431630
  16. T. Kobayashi, M. Bando, N. Kimura, K. Shimizu1, K. Kadono, N. Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami and D. Hobara, "Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process", Appl. Phys. Lett., 102(2), 0231120 (2013). https://doi.org/10.1063/1.4810756
  17. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo and R. S. Ruoff, "Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes", Nano Lett., 9(12), 4359 (2009). https://doi.org/10.1021/nl902623y
  18. S. U. Jo, H. J. Kang and M. Y. Jeong, "The Study of Optical Device embedded Optical Alignment fabricated by Roll to Roll Process", J. Microelectron. Packag. Soc., 20(3), 19 (2013). https://doi.org/10.6117/kmeps.2013.20.3.019
  19. M. K. Lee, E. K. Lee, M. Yang, M. W. Chon, H. Lee, J. S. Lim and S. H. Choa, "Flexibility Study of Silicon Thin Film Transferred on Flexible Substrate", J. Microelectron. Packag. Soc., 20(3), 23 (2013). https://doi.org/10.6117/kmeps.2013.20.2.023
  20. Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu and K. P. Loh, "Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst", ACS Nano., 5(12), 9927 (2011). https://doi.org/10.1021/nn203700w
  21. L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, X. Bao anf H.-M. Cheng, "Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum", Nature Communications., 3(699), 1 (2012).
  22. E. H. Lock, M. Baraket, M. Laskoski, S. P. Mulvaney, W. K. Lee, P. E. Sheehan, D. R. Hines, J. T. Robinson, J. Tosado, M. S. Fuhrer, S. C. Hernández and S. G. Walto, "High-Quality Uniform Dry Transfer of Graphene to Polymers", Nano Lett., 12(1), 102 (2011).
  23. C. Kim, J. Y. Woo, J. Choi, J. Park and C.-S. Han, "Direct transfer of graphene without the removal of a metal substrate using a liquid polymer", Scripta Materialia., 66(8), 535 (2012). https://doi.org/10.1016/j.scriptamat.2011.12.034
  24. T. Yoon, W. C. Shin, T. Y. Kim, J. H. Mun, T.-S. Kim and B. J. Cho, "Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process", Nano Lett., 12(3), 1448 (2012). https://doi.org/10.1021/nl204123h
  25. Z. Suo and J. W. Hutchinson, "Interface crack between two elastic layers", International Journal of Fracture., 43(1), 1 (1990). https://doi.org/10.1007/BF00018123
  26. J. W. Hutchinson and Z. Suo, "Mixed Mode Cracking in Layered Materials", Advances in Applied Mechanics., 29(63), 191 (1992).
  27. A. Kamer, K. Larson-Smith, L. S. C. Pingree and R. H. Dauskardt, "Adhesion and degradation of hard coatings on poly (methyl methacrylate) substrates", Thin Solid Films., 519(6), 1907 (2011). https://doi.org/10.1016/j.tsf.2010.08.116
  28. S. P. Koenig, N. G. Boddeti, M. L. Dunn and J. S. Bunch, "Ultrastrong adhesion of graphene membranes", Nature nanotechnology., 6(9), 543 (2011). https://doi.org/10.1038/nnano.2011.123
  29. M. Kanninen, "An augmented double cantilever beam model for studying crack propagation and arrest", International Journal of Fracture., 9(1), 83 (1973).
  30. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, "Raman Spectrum of Graphene and Graphene Layers", Phys. Rev. Lett., 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401

Cited by

  1. Efficient etching-free transfer of high quality, large-area CVD grown graphene onto polyvinyl alcohol films vol.363, 2016, https://doi.org/10.1016/j.apsusc.2015.11.265
  2. Past and Present Research Topics within the Korean Micoelectronics and Packaging Using Social Network Analysis vol.22, pp.3, 2015, https://doi.org/10.6117/kmeps.2015.22.3.009
  3. Role of Crack Deflection on Rate Dependent Mechanical Transfer of Multilayer Graphene and Its Application to Transparent Electrodes vol.2, pp.4, 2019, https://doi.org/10.1021/acsanm.9b00014
  4. 주석산화물 에어로겔의 Graphene Oxide 첨가에 따른 광촉매적 Rhodamine B 분해 vol.28, pp.1, 2021, https://doi.org/10.6117/kmeps.2021.28.1.061