DOI QR코드

DOI QR Code

Improved Thermal Resistance of an LED Package Interfaced with an Epoxy Composite of Diamond Powder Suspended in H2O2

과산화수소 적용 TIM의 LED 패키지 열특성 개선효과

  • Choi, Bong-Man (School of Information and Communication Engineering, Inha University) ;
  • Hong, Seong-Hun (School of Information and Communication Engineering, Inha University) ;
  • Jeong, Yong-Beom (School of Information and Communication Engineering, Inha University) ;
  • Kim, Ki-Bo (School of Information and Communication Engineering, Inha University) ;
  • Lee, Seung-Gol (School of Information and Communication Engineering, Inha University) ;
  • Park, Se-Geun (School of Information and Communication Engineering, Inha University) ;
  • O, Beom-Hoan (School of Information and Communication Engineering, Inha University)
  • 최봉만 (인하대학교 정보통신공학과, LED PD 연구팀) ;
  • 홍성훈 (인하대학교 정보통신공학과, LED PD 연구팀) ;
  • 정용범 (인하대학교 정보통신공학과, LED PD 연구팀) ;
  • 김기보 (인하대학교 정보통신공학과, LED PD 연구팀) ;
  • 이승걸 (인하대학교 정보통신공학과, LED PD 연구팀) ;
  • 박세근 (인하대학교 정보통신공학과, LED PD 연구팀) ;
  • 오범환 (인하대학교 정보통신공학과, LED PD 연구팀)
  • Received : 2014.06.16
  • Accepted : 2014.07.28
  • Published : 2014.08.25

Abstract

We present a method for manufacturing a TIM used for packaging a high-power LED. In this method a mixture of diamond powder and hydrogen peroxide is used as a filler epoxy. The thermal resistance of the TIM with hydrogen peroxide was improved by about 30% over the thermal resistance of the TIM without hydrogen peroxide. We demonstrate that as a result the heat generated from the chip is easily dissipated through the TIM.

고출력 LED 소자의 활용이 많아지면서, 온도상승 문제를 극복하고 신뢰성을 향상해야 하는 요구가 높아짐에 따라 광원 패키지의 방열이 매우 중요해졌다. 패키지에 칩을 접합하는 열전달 물질(TIM, Thermal Interface Material)은 열전도도가 높은 물질과 폴리머를 혼합하여 재료 자체의 열전달 특성을 향상시키는 방안이 사용되어 왔으나, 실제 패키지의 열 특성은 칩 부착계면의 높은 열저항으로 인해 기대에 미치지 못하고 있다. 본 연구는 diamond 분말과 epoxy의 혼합으로 열 특성을 개선함에 있어서, 과산화수소를 적용하면서도 기포를 효율적으로 제거하여, 각 계면의 친화성을 높이고 전체 점도를 낮추어 diamond 분말의 분산을 촉진하고, 결과적으로 대부분의 경우에 전체 열 저항을 약 30% 이상 개선하였다.

Keywords

References

  1. J. K. Kim, W. Nakayama, and S. K. Lee, "Characterization of a thermal interface material with heat spreader," KSME, 45-46 (2010).
  2. R. S. Prasher and J. C. Matayabas, Jr., "Thermal contact resistance of cured gel polymeric thermal interface material," Proc. IEEE 27, 702-709 (2004).
  3. M. H. Shin and J. P. Kim, "Introduction to LED packaging technology," Bookshill, 88-99, 978-89-5526-502-6 (2008).
  4. K. M. F. Shahil and A. A. Balandin, "Thermal properties of grapheme and multilayer grapheme: Applications in thermal interface materials," Elsevier 152, 1331-1340 (2012).
  5. W. S. Lee and J. Yu, "Comparative study of thermally conductive fillers in underfill for the electronic components," Elsevier 14, 1647-1653 (2005). https://doi.org/10.1016/j.diamond.2005.05.008
  6. V. N. Mochalin and I. Neitzel, "Covalent incorporation of aminated nanodiamond into and epoxy polymer network," ACSNANO 5, 7494-7502 (2011).
  7. K. Zhang, Y. Chai, M. M. F. Yuen, D. G. W. Xiao, and P. C. H. Chan, "Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling," IOP 19, 8-15 (2008).
  8. SEOUL SEMICONDUCTOR Paper.

Cited by

  1. Thermal Characteristics of a Heat Sink with Bypass Structure for GaN-based Laser Diode vol.27, pp.6, 2016, https://doi.org/10.3807/KJOP.2016.27.6.218