DOI QR코드

DOI QR Code

Technology Trend on the Increase of Biogas Production and Sludge Reduction in Wastewater Treatment Plants: Sludge Pre-treatment Techniques

하수처리장 바이오가스 생산 증대와 슬러지 감량화에 관한 기술분석: 슬러지 전처리 기술

  • Cho, Il Hyoung (Department of Environmental and Energy Engineering, R&D Center for Advanced Technology of Wastewater Treatment and Reuse, Kyonggi University) ;
  • Ko, In Beom (KOLON Water & Energy CO., LTD.) ;
  • Kim, Ji Tae (Department of Environmental and Energy Engineering, R&D Center for Advanced Technology of Wastewater Treatment and Reuse, Kyonggi University)
  • 조일형 (경기대학교 환경에너지공학과 하.폐수고도처리기술개발사업단) ;
  • 고인범 (코오롱워터앤에너지(주)) ;
  • 김지태 (경기대학교 환경에너지공학과 하.폐수고도처리기술개발사업단)
  • Received : 2014.01.27
  • Accepted : 2014.04.12
  • Published : 2014.08.01

Abstract

The potential of using the biogas as energy source has long been widely recognised and current techniques are being developed to upgrade the technical quality and to enhance energy efficiency. The objective of this paper is to present efficient and effective pre-treatment methods of increasing the amount of produced biogas in anaerobic digestion of activated sludge treatment process. The paper also presents a review of the effect on biogas production between pre-treated and raw sludge, and also put forward the advantages and disadvantages of each pre-treatment method.

에너지원으로 바이오가스에 대한 잠재적 가능성이 인식되면서 최근에 바이오가스의 생산기술을 제고하고 에너지 효율을 개선하기 위한 기술개발이 지속적으로 진행되고 있다. 본 논문의 목적은 혐기성 소화 과정에서 바이오가스 생산을 증가시키기 위한 효과적이고 효율적인 슬러지 전처리 방법에 대하여 분석하였다. 이를 위해 본 논문에서는 각각의 전처리 방법의 장점과 단점을 분석하여 바이오가스 생산에 미치는 영향요인을 비교 분석하였다.

Keywords

References

  1. Kim, H. R., "Sludge Waste to Energy and Resources in Sewage and Wastewater Treatment Plants," Korean Organic Recycling Association, 2012(5), 31-50(2012).
  2. Korean Ministry of Environment (KMOE), "The fact of biogas facilities using the waste biomass in 2009".
  3. Cho, H. U., Park, S. K., Ha, J. H. and Park, J. M., "An Innovative Sewage Sludge Reduction by Using a Combined Mesophilic Anaerobic and Thermophilic Aerobic Process with Thermal Alkaline Treatment and Sludge Recirculation," J. Environ. Manage., 129, 274-282(2013). https://doi.org/10.1016/j.jenvman.2013.07.009
  4. Onyeche, T., "Sewage Sludge as Source of Energy," In: Proceedings of the IWA specialized conference on sustainable sludge management: state-of-the-art, challenges and perspectives, Moscow, Russia, May, 235-241(2006).
  5. Apul, O. G. and Sanin, F. D., "Ultrasonic Pretreatment and Subsequent Anaerobic Digestion Under Different Operational Conditions," Biores Technol., 101, 8984-8992(2010). https://doi.org/10.1016/j.biortech.2010.06.128
  6. Perez-Elvira, SI., Fernandez-Polanc, F., Fernandez-Polanco, M., Rodriguez, P. and Rouge, P., "Hydrothermal Multivariable Approach. Full-scale Feasibility Study," Electron J Biotechnol., 11, 7-8(2008).
  7. Erden, G., Demir, O. and Filibeli, A., "Disintegration of Biolog-ical Sludge: Effect of Ozone Oxidation and Ultrasonic Treatment on Aerobic Digestibility," Biores Technol., 101, 8093-8098(2010). https://doi.org/10.1016/j.biortech.2010.06.019
  8. Li, H., Jin, Y. and Nie, Y., "Application of Alkaline Treatment for Sludge Decrement and Humic Acid Recovery," Biores Technol., 100, 6278-6283(2009). https://doi.org/10.1016/j.biortech.2009.07.022
  9. Ferrer, I., Serrano, E., Ponsa, S., Vazquez, F. and Font, X., "Enhancement of Thermophile Anaerobic Sludge Digestion by $70^{\circ}C$ Pretreatment: Energy Considerations," J. Residuals Sci. Technol., 6(1), 11-18(2009).
  10. Tang, B., Yu, L., Huang, S., Luo, J. and Zhuo, Y., "Energy Efficiency of Pre-treating Excess Sewage Sludge with MW Irradiation," Biores Technol., 101, 5092-5097(2010). https://doi.org/10.1016/j.biortech.2010.01.132
  11. Yuan, S., Zheng, Z., Mu, Y., Yu, X. and Zhao, Y., " Use of Gamma Irradiation Pretreatment for Enhancement of Anaerobic Digestibility of Sewage Sludge," Frontier Environ Sci Eng China., 2(2), 247-250 (2008). https://doi.org/10.1007/s11783-008-0041-9
  12. Stephenson, R., Rabinowitz, B., Laliberte, S. and Elson, P., "Teaching An Old Digester New Tricks: Full-scale Demonstration of the Micro Sludge Process to Liquefy Municipal WAS. In: WEF Proceedings of the Residuals and Biosolids Management Conference, Covington, KY(2005).
  13. Liu, X., Liu, H., Chen, J., Du, G. and Chen, J., "Enhancement of Solubilization and Acidification of Waste Activated Sludge by Pretreatment," Waste Manage., 28, 2614-2622(2008). https://doi.org/10.1016/j.wasman.2008.02.001
  14. Moller, J., Boldrin, A. and Christensen, T. H., "Anaerobic Digestion and Digestate Use: Accounting of Greenhouse Gases and Global Warming Contribution," Waste Manage. Res, 27, 813-824(2009). https://doi.org/10.1177/0734242X09344876
  15. EurObserv'E. R., "The State of Renewable Energies in Europe - 2011 Edition," December, 56(2011).
  16. Floris van Foreest, "Perspectives for Biogas in Europe," Oxford Institute for Energy Studies(2012).
  17. Bodik, I., Sedlaeek, S., Kubaska, M. and Hutoan, M., "Biogas Production in Municipal Wastewater Treatment Plants - Current Status in EU with a Focus on the Slovak Republic," Chem. Biochem. Eng. Q., 25(3), 335-340(2011).
  18. Strauch, S. and Fraunhofer UMSICHT, "Biogas Upgrading Technologies," June(2012).
  19. Leibniz, L. B., "Institute for Agricultural Engineering, IEA Bioenergy Task 37," Country Report, Germany, September 2011.
  20. Strauch, S., Krassowski, J. and Singhal, A., "Biomethane Guide for Decision Makers - Policy Guide on Biogas Injection into the Natural Gas Grid," Fraunhofer UMSICHT(2013).
  21. Patricia Sinicropi, J. D., "Biogas Production at Wastewater Treatment Facilities," Congressional Briefing-May 16, National Association of Clean Water Agencies(2012).
  22. AgSTAR, AD 101 Biogas recovery systems. US EPA. http://www.epa.gov/agstar/anaerobic/ad101/index.html. Accessed 1 May 2011.
  23. Renewable Waste INTELLIGENCE, Business Analysis of Anaerobic Digestion in the USA March(2013).
  24. Pike Research, Global Biogas Market to Nearly Double in Size to $33 Billion by 2022(2012).
  25. Global Intelligence Alliance (GIA), How to Profit from Biogas Market Developments
  26. The U.S. Environmental Protection Agency (EPA), Opportunities for Combined Heat and Power at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field U.S. Environmental Protection Agency Combined Heat and Power Partnership, October 2011.
  27. Tchobanoglous, G. and Leverenz, H., "Impacts of New Concepts and Technology on the Energy Sustainability of Wastewater Management," Presented at Conference on Climate Change, Sustainable Development and Renewable Resources in Greece. October 17, 2009.
  28. Water Environment Research Foundation. Exploratory Team Report. Energy Management(2011).
  29. Karakashev, A. D., Batstone, D. J., Plugge, C. M. and Stams, A. J. M., "Biomethanation and Its Potential Methods," Enzymol., 494, 329-353(2011).
  30. California Environmental Protection Agency, "Current Anaerobic Digestion Technologies Used for Treatment of Municipal Organic Solid Waste," Contractor's Report(2008).
  31. Nichols, C. E., "Overview of Anaerobic Digestion Technologies in Europe," BioCycle, 45(1), 47-53(2004).
  32. Poo, K., Im, J., Ko, J., Kim, Y., Woo, H. and Kim, C., "Control and Nitrogen Load Estimation of Aerobic Stage in Full-scale Sequencing Batch Reactor to Treat Strong Nitrogen Swine Wastewater," Korean J. Chem. Eng., 22(5), 666-670(2005). https://doi.org/10.1007/BF02705780
  33. Elmitvalli, T., "Treatment of Municipal Wastewater in Upflow Anaerobic Sludge Blanket (UASB) Reactor," WEB BASED TRAINING(2005).
  34. Bal, A. S. and Dhagat, N. N., "Upflow Anaerobic Sludge Blanket Reactor-a Review," Indian J Environ Health. 43(2), 1-82(2001).
  35. Cecchi, F., Traverso, P. G., Mata-Alverez, J., Clancy, J. and Zaror, C., "State of the Art of R&D in the Anaerobic Digestion Process of Municipal Solid Waste in Europe," Biomass, 16, 257-284(1988). https://doi.org/10.1016/0144-4565(88)90031-5
  36. Sato, K., Ochi, S. and Mizuochi, M., "Up-to Date Modification of the Anaerobic Sludge Digestion Process Introducing a Separate Sludge Digestion Mode," Water Sci. Technol., 44, 143-147(2001).
  37. Speece, R., "Anaerobic Biotechnology for Industrial Wastewaters," Archae Press, Nashville, Tenessee, 394(2001).
  38. Rittmann, B. and McCarty, P., "Environmental Biotechnology: Principals and Applications," McGraw-Hill, New York, 768(2000).
  39. Tyagi, V. K. and Lo, S. L., "Application of Physico-chemical Pretreatment Methods to Enhance the Sludge Disintegration and Subsequent Anaerobic Digestion: An up to Date Review," Rev Environ Sci Biotechnol., 10, 215-242(2011). https://doi.org/10.1007/s11157-011-9244-9
  40. Carrere, H., Dumas, C., Battimelli, A., Batstone, D. J., Delgenes, J. P. and Ferre, S. I., "Pretreatment Methods to Improve Sludge Anaerobic Degradability: A Review Review," J. Hazard. Mater., 183(1-3), 1-15(2010). https://doi.org/10.1016/j.jhazmat.2010.06.129
  41. http://www.engineeringvillage2.com.
  42. Shehu, M. S., Manan, Z. A. and Wan Alwi, S. R., "Optimization of Thermo-alkaline Disintegration of Sewage Sludge for Enhanced Biogas Yield," Bioresour. Technol., 114, 69-74(2012). https://doi.org/10.1016/j.biortech.2012.02.135
  43. Cui, R. and Jahng, D. J., "Nitrogen Control in AO Process with Recirculation of Solubilized Excess Sludge," Water Res., 38, 1159-1172(2004). https://doi.org/10.1016/j.watres.2003.11.013
  44. Saktaywin, W., Tsuno, H., Soyama, T. and Weerapakkaroon, J., "Advanced Sewage Treatment Process with Excess Sludge Reduction and Phosphorus Recovery," Water Res., 39, 902-910(2005). https://doi.org/10.1016/j.watres.2004.11.035
  45. Muller, J. A., "Pre-treatment Processes for Recycling and Reuse of Sewage Sludge," Water Sci. Technol., 42, 167-174(2000).
  46. Chu, L., Yan, S., Xing, X. H. and Jurick, B., "Progress and Perspectives of Sludge Ozonation as a Powerful Pretreatment Method for Minimization of Excess Sludge Production," Water Res., 43, 1811-1822(2009). https://doi.org/10.1016/j.watres.2009.02.012
  47. Levlin, E., "Maximizing Sludge and Biogas Production for Counteracting Global Warming. International Scientific Seminar, Research and Application of New Technologies in Wastewater Treatment and Municipal Solid Waste Diposal in Ukraine," Sweden and Poland 23-25 September 2009 Stockholm, Polish-Swedish, TRITA-LWR REPORT 3026, pp. 95-104(2010).
  48. Chu, C. P., Lee, D. J., Chang, B. V., You, C. S. and Tay, J. H., "Weak Ultrasonic Pre-treatment on Anaerobic Digestion of Flocculated Activated Biosolids," Water Res., 36(11), 2681-2688 (2002). https://doi.org/10.1016/S0043-1354(01)00515-2
  49. Wett, B., Phothilangka, P. and Eladawy, A., "Systematic Comparison of Mechanical and Thermal Sludge Disintegration Technologies," Waste Manage., 30, 1057-1062(2010). https://doi.org/10.1016/j.wasman.2009.12.011
  50. Elliott, A. and Mahmood, T., "Pretreatment Technologies for Advancing Anaerobic Digestion of Pulp and Paper Biotreatment Residues," Water Res., 41, 4273-4286(2007). https://doi.org/10.1016/j.watres.2007.06.017
  51. Kepp, U., Machenbach, I., Welsz, N. and Solhelm, O., "Enhanced Stabilization of Sewage Sludge Through Thermal Hydrolysisthree Years of Experience with Full Scale Plant," Water Sci. Technol., 42(9), 89-96(2000).
  52. Evans. T., Independent review of retrofitting Cambi to Mad. In: WEF Proceedings of the 17th Residuals and Biosolids Conference, Baltimore, MD(2003).
  53. Cooper, A. D., Benson, L., Bailey, W., Jolly, E. and Krill, W., "Maximizing Benefits from Renewable Energy at Blue Plains AWWTP", Water Environment Federation., 23-32(2010).
  54. Onur Guven Apul, O. G. and Sanin, F. D., "Ultrasonic Pretreatment and Subsequent Anaerobic Digestion Under Different Operational Conditions," Bioresour. Technol., 101(23), 8984-8992(2010). https://doi.org/10.1016/j.biortech.2010.06.128
  55. Pilli, S., Bhunia, P., Yan, S., LeBlanc, R. J., Tyagi, R. D. and Surampall, R. Y., "Ultrasonic Pretreatment of Sludge: A Review," Ultrason. Sonochem., 18(1), 1-18(2011). https://doi.org/10.1016/j.ultsonch.2010.02.014
  56. Xie, R., Xing, Y., Ghami Yahya, A., Ooi, K. and Ng, S., "Ultrasound Disintegration Technology in Improving Anaerobic Digestion of Sewage Sludge Under Trophic Conditions," In: Proceedings of the 10th European Biosolids and Biowaste Conference, Wakefield, UK(2005).
  57. Hogan, F., Mormede, S., Clark, P. and Crane, M., "Ultrasound Sludge Treatment for Enhanced Anaerobic Digestion," Water Sci. Technol., 50(9), 25-32(2004).
  58. Kruger, R. and Hogan, F., "Using Sonix to Enhance Anaerobic Digestion: An Overview from Different Trials and Installations," In: WEF Proceedings of the Residuals and Biosolids Conference, Covington, KY(2005).
  59. Taherzadeh, M. J. and Karimi, K., "Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review," Int. J. Mol. Sci. 9, 1621-1651(2008). https://doi.org/10.3390/ijms9091621
  60. Zhang, S., Zhang, P., Zhang, G., Fan, J. and Zhang, Y., "Enhancement of Anaerobic Sludge Digestion by High-pressure Homogenization," Bioresour. Technol., 118, 496-501(2012). https://doi.org/10.1016/j.biortech.2012.05.089
  61. Kim, J., Park, C., Kim, T. H., Lee, M., Kim, S., Kim, S. W. and Lee, J., "Effects of Various Pretreatments for Enhanced Anaerobic Digestion with Waste Activated Sludge," J. Biosci. Bioeng, 95(3), 271-275(2008).
  62. Panter, K. and Kleiven, H., "Ten Years Experience of Full-scale Thermal Hydrolysis Projects. In: Proceedings of the 10th European Biosolids and Biowaste Conference," Wakefield, UK(2005).
  63. Mayhew, M., Le, M. and Ratcliff, R., "A Novel Approach to Pathogen Reduction in Biosolids: the Enzymic Hydrolyser," Water Sci. Technol, 46(4/5), 7-434(2002).
  64. Mayhew, M., Le, M., Brade, C. and Harrison, D., "The United Utilities Enzymic Hydrolysis Process-validation of Phased Digestion at Full-scale to Enhance Pathogen Removal," In: WEF Proceedings of the Residuals and Biosolids Conference, Baltimore, MD(2003).
  65. Miah, M., Tada, C. and Sawayama, S., "Enhancement of Biogas Production from Sewage Sludge with the Addition of Geobacillus sp. Strain AT1 Culture," Japan Journal of Water Treatment., 40(3), 97-104(2004), https://doi.org/10.2521/jswtb.40.97
  66. Park, B., Ahn, J., Kim, J. and Hwang, S.. "Use of Microwave Pretreatment for Enhanced Anaerobiosis of Secondary Sludge," Water Sci. Technol., 50(9), 17-23(2004).
  67. Zimpro Environmental, "Wet Air Oxidation Cleans up Black Wastewater," Chem Eng September, 175-176(1993).
  68. Yasui, H. and Shibata, M., "An Innovative Approach to Reduce Excess Sludge Production in the Activated Sludge Process," Wat. Sci. Tech, 30(9), 11-20(1994).
  69. Yeom, I. T., Lee, K. R., Lee, Y. H., Ahn, K. H. and Lee, S. H., "Effects of Ozone Treatment on the Biodegradability of Sludge from Municipal Wastewater Treatment Plants," Water Sci. Technol., 46(4-5), 421-425(2002).
  70. Weemaes, M., Grootaerd, H., Simoens, F. and Verstraete, W., "Anaerobic Digestion of Ozonized Biosolids," Water Res., 34(8), 2330-2336(2000). https://doi.org/10.1016/S0043-1354(99)00373-5
  71. Paul, E., Camacho, P., Sperandio, M. and Ginestet, P., "Technical and Economical Evaluation of a Thermal, and Two Oxidative Techniques for the Reduction of Excess Sludge Production," In 1st International Conference on Engineering for Waste Treatment. Albi (France)(2005).
  72. Bougrier, C., Battimelli, A., Delgenes, J. P. and Carrere, H. "Combined Ozone Pretreatment and Anaerobic Digestion for the Reduction of Biological Sludge Production in Wastewater Treatment," Ozone-Sci. Eng., 29(3), 201-206(2007). https://doi.org/10.1080/01919510701296754
  73. Li, Y. Y. and Noike, T., "Upgrading of Anaerobic Digestion of Waste Activated Sludge by Thermal Pretreatment," Water Sci. Technol., 26(3-4), 857-866(1992).
  74. Haug, R. T., Stuckey, D. C., Gossett, J. M. and Mac, Carty P. L., "Effect of Thermal Pretreatment on Digestibility and Dewaterability of Organic Sludges," J. Water Pol. Control Fed, 1, 73-85(1978).
  75. Bougrier, C., Delgenes, J. P. and Carrere, H., "Combination of Thermal Treatments and Anaerobic Digestion to Reduce Sewage Sludge Quantity and Improve Biogas Yield," Process Saf. Environ. Prot., 84(B4), 280-284(2006). https://doi.org/10.1205/psep.05162
  76. Fernandez-Polanco, F., Velazquez, R., Perez-Elvira, S. I., Casas, C. D. del Barrio., Cantero, F. J., Fdz-Polanco, M., Rodriguez, P., Panizo, L., Serrat, J. and Rouge, P., "Continuous Thermal Hydrolysis and Energy Integration in Sludge Anaerobic Digestion Plants," Water Sci. Technol., 57(8), 1221-1226(2008). https://doi.org/10.2166/wst.2008.072
  77. Salsabil, M. R., Prorot, A., Casellas, M. and Dagot, C., "Pre-treatment of Activated Sludge: Effect of Sonication on Aerobic and Anaerobic Digestibility," Chem. Eng. J, 148(2-3), 327-335(2009). https://doi.org/10.1016/j.cej.2008.09.003
  78. Valo, A., Carrere, H. and Delgenes, J. P., "Thermal, Chemical and Thermo-chemical Pre-treatment of Waste Activated Sludge for Anaerobic Digestion," J. Chem. Technol. Biotechnol. 79(11), 1197-1203(2004). https://doi.org/10.1002/jctb.1106
  79. Penaud, V., Delgenes, J. P. and Moletta, R., "Influence of Thermochemical Pre-treatment Conditions on Solubilization and Anaerobic Biodegradability of a Microbial Biomass," Env Tech, 21, 87-96(2000). https://doi.org/10.1080/09593332108618141
  80. Tanaka, S., Kobayashi, T., Kamiyama, K., Bildan, M., "Effects of Thermo-chemical Pretreatment on the Anaerobic Digestion of WAS.," Wat. Sci. Technol., 35(8), 209-215(1997). https://doi.org/10.1016/S0273-1223(97)88229-7
  81. Jin, Y., Li, H., Mahar, R. B., Wang, Z. and Nie, Y., "Combined Alkaline and Ultrasonic Pretreatment of Sludge Before Aerobic Digestion," J. Environ. Sci., 21, 279-284(2009). https://doi.org/10.1016/S1001-0742(08)62264-0
  82. Cho, S. K., Kim, D. H. and Shin, H. S., "Combined Pretreatments of Various (alkaline + ultrasound, alkaline + thermal alkaline + MW) Effect on Sewage Sludge Disintegration," 19th KKNN Symposium, 45, 22(2010).
  83. Xu, G., Chen, S., Shi, J., Wang, S. and Zhu, G., "Combination Treatment of Ultrasound and Ozone for Improving Solubilization and Anaerobic Biodegradability of Waste Activated Sludge," J. Hazard. Mater., 180, 340-346(2010). https://doi.org/10.1016/j.jhazmat.2010.04.036
  84. Rivard, C. J. and Nagle, N. J., "Pretreatment Technology for the Beneficial Reuse of Municipal Sewage Sludges," Appl Bioch Biotechnol, 57-58, 983-991(1996). https://doi.org/10.1007/BF02941778
  85. Ayling, G. W. and Castrantas, H. M., "Waste Treatment with Hydrogen Peroxide," Chem Eng NY, 88, 79-82(1981).
  86. Kim, T. H., Lee, S. R., Nam, Y. K., Yang, J., Park, C. and Lee, M., "Disintegration of Excess Activated Sludge by Hydrogen Eroxide Oxidation," Desalination, 246, 275-284(2009). https://doi.org/10.1016/j.desal.2008.06.023
  87. Kim, D. J., Kim, H., "Sludge Solubilization by Pre-treatment and its Effect on Methane Production and Sludge Reduction in Anaerobic Digestion," Korean Chem. Eng. Res, 48(1), 103-109(2010).

Cited by

  1. A Study on Characteristics of Solubilization and Biogas Production for Sewage Sludge using Thermal Pretreatment vol.24, pp.2, 2015, https://doi.org/10.7844/kirr.2015.24.2.46
  2. Economic Feasibility Analysis of Building Seonam Biogas Combined Heat and Power Plant vol.25, pp.4, 2016, https://doi.org/10.5855/ENERGY.2016.25.4.141
  3. Strength Estimation by the Point Load Test of the Sewage Sludge Solid Refuse Fuel vol.40, pp.1, 2018, https://doi.org/10.4491/KSEE.2018.40.1.7
  4. 최종 하수처리장 슬러지의 추가감량을 위한 슬러지 전처리 연구 vol.15, pp.10, 2014, https://doi.org/10.14481/jkges.2014.15.10.15
  5. 습식산화반응을 통한 중력식반응기로부터의 슬러지 처리 및 유기산 생산 공정모사 vol.54, pp.2, 2014, https://doi.org/10.9713/kcer.2016.54.2.248
  6. 하·폐수 슬러지 처리기술의 개발 동향에 관한 연구 vol.17, pp.8, 2014, https://doi.org/10.14481/jkges.2016.17.8.5
  7. Effect of crushing conditions of crushing rate in process analysis of sewage-sludge organic solid-fuel crusher using the discrete element method vol.33, pp.12, 2019, https://doi.org/10.1007/s12206-019-1138-8
  8. 에너지 생산형 하수처리장을 위한 가용 기술과 통합관리 방안 vol.36, pp.1, 2014, https://doi.org/10.15681/kswe.2020.36.1.55
  9. Energy efficient sludge solubilization by microwave irradiation under carbon nanotube (CNT)-coated condition vol.259, pp.None, 2020, https://doi.org/10.1016/j.jenvman.2020.110089
  10. Study on Flow Pattern According to Rotor Design Parameter of Sewage Sludge Solid Fuel Crusher vol.15, pp.3, 2014, https://doi.org/10.1007/s42835-020-00404-x
  11. Biogas potential and methanogenic community shift in in-situ anaerobic sewage sludge digestion with food waste leachate additions vol.63, pp.1, 2020, https://doi.org/10.1186/s13765-020-00546-6