DOI QR코드

DOI QR Code

Optimization of Adsorbent Treatment Process for the Purification of Paclitaxel from Plant Cell Cultures of Taxus chinensis

주목 식물세포(Taxus chinensis)배양으로부터 파클리탁셀 정제를 위한 흡착제 처리 공정 최적화

  • Lee, Chung-Gi (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Hyun (Department of Chemical Engineering, Kongju National University)
  • 이충기 (공주대학교 화학공학부) ;
  • 김진현 (공주대학교 화학공학부)
  • Received : 2014.02.19
  • Accepted : 2014.03.23
  • Published : 2014.08.01

Abstract

Biomass-derived tar and waxy compounds have a highly negative effect on the separation and purification of paclitaxel and should be removed prior to final purification. Adsorbent treatment is a simple, efficient method for removal of tar and waxy compounds from plant cell cultures. In this study, we optimized the important process parameters (adsorption temperature, time, solvent type and adsorbent amount) of adsorbent treatment with Sylopute to remove the tar and waxy compounds in a pre-purification step. The optimal adsorption temperature, adsorption time, solvent type, and crude extract/Sylopute ratio were $30^{\circ}C$, 15 min, methylene chloride, and 1:1(w/w), respectively. This result could be confirmed by HPLC analysis of the absorbent after treatment and TGA of the organic substances that were bound to the adsorbent. In adsorbent treatment step, the purity seemed to show a small improvement but this treatment had a significant effect on convenience and feasibility of following steps by the removal of tar and waxy compounds.

바이오매스 유래 타르 및 왁스 성분은 파클리탁셀의 분리정제에 많은 악영향을 미치기 때문에 반드시 제거되어야 한다. 흡착제 처리는 식물세포배양으로부터 유래된 타르 및 왁스 성분을 매우 간단하고 효과적으로 제거할 수 있는 방법이다. 본 연구에서는 전처리 단계에서 상용흡착제 실로퓨트를 이용한 흡착제 처리 공정에서 주요 공정 변수들(온도, 시간, 용매, 건조시료/실로퓨트 비율)을 최적화하였다. 최적의 흡착제 처리 온도, 시간, 용매, 건조시료/실로퓨트 비율은 각각 $30^{\circ}C$, 15분, 메틸렌 클로라이드, 1:1(w/w)이었다. 이러한 결과는 TGA와 HPLC 분석을 통한 유기물의 흡착 양상으로도 확인하였다. 흡착제 처리 단계에서 순도 증가는 미미하였으나 타르 및 왁스 성분의 제거로 인한 후속공정의 공정 가능성과 편리성에 상당히 영향을 미쳤다.

Keywords

References

  1. Kim, J. H., "Paclitaxel : Recovery and Purification in Commercialization Step," Kor. J. Biotechnol. Bioeng., 21, 1-10(2006).
  2. Rao, K. V., Hanuman, B., Alvarez, C., Stoy, M., Juchum, J., Davies, R. M. and Baxley, R., "A New Large-Scale Process for Taxol and Related Taxanes from Taxus brevifolia," Pharm. Res., 12, 1003-1010(1995). https://doi.org/10.1023/A:1016206314225
  3. Baloglu, E. and Kingston, D. G., "A New Semisynthesis of Paclitaxel from Baccatin III," J. Nat. Prod., 62, 1068-1071(1999). https://doi.org/10.1021/np990040k
  4. Choi, H. K., Adams, T. L., Stahlhut, R. W., Kim, S. I., Yun, J. H., Song, B. K., Kim, J. H., Hong, S. S. and Lee, H. S., "Method for Mass Production of Taxol by Semi-Continuous Culture with Taxus chinensis Cell Culture," U.S. Patent No. 5,871,979(1999).
  5. Choi, H. K., Son, S. J., Na, G. H., Hong, S. S., Park, Y. S. and Song, J. Y., "Mass Production of Paclitaxel by Plant Cell Culture," Korean J. Plant Biotechnol., 29, 59-62(2002). https://doi.org/10.5010/JPB.2002.29.1.059
  6. Jeon, K. Y. and Kim, J. H., "Improvement of Fractional Precipitation Process for Pre-Purification of Paclitaxel," Process Biochem., 44, 736-741(2009). https://doi.org/10.1016/j.procbio.2009.03.007
  7. Rao, K. V., "Method for the Isolation and Purification of Taxol and Its Natural Analogues," U.S. Patent No. 5,670, 673(1997).
  8. Castor, T. P., "Method and Apparatus for Isolating Therapeutic Compositions from Source Materials," U.S. Patent No. 5, 750, 709(1998).
  9. ElSohly, H. N., Jr. Croom, E. M., ElSohly, M. A. and McChesney, J. D., "Methods and Compositions for Isolating Taxanes," U.S. Patent No. 5, 618,538(1997).
  10. Ko, K. Y. and Kim, I. H., "The Effect of pH and Temperature on Lysozyme Separation in Ion-exchange Chromatography," Korean Chem. Eng. Res., 52(1), 98-105(2014). https://doi.org/10.9713/kcer.2014.52.1.98
  11. Kim, J. H., Kang, I. S., Choi, H. K., Hong, S. S. and Lee, H. S., "A Novel Pre-Purification for Paclitaxel from Plant Cell Cultures," Process Biochem., 37, 679-682(2002). https://doi.org/10.1016/S0032-9592(01)00247-3
  12. Pyo, S. H., Park, H. B., Song, B. K., Han, B. H. and Kim, J. H., "A Large-Scale Purification of Paclitaxel from Cell Cultures of Taxus chinensis," Process Biochem., 39, 1985-1991(2004). https://doi.org/10.1016/j.procbio.2003.09.028
  13. Pyo, S. H., Song, B. K., Ju, C. H., Han, B. H. and Choi, H. J., "Effects of Absorbent Treatment on the Purification of Paclitaxel from Cell Cultures of Taxus chinensis and Yew Tree," Process Biochem., 40, 1113-1117(2005). https://doi.org/10.1016/j.procbio.2004.03.004
  14. Han, M. G., Jeon, K. Y., Mun, S. Y. and Kim, J. H., "Development of a Micelle-Fractional Precipitation Hybrid Process for the Pre-Purification of Paclitaxel from Plant Cell Cultures," Process Biochem., 45, 1368-1374(2010). https://doi.org/10.1016/j.procbio.2010.05.010
  15. Sim, H. A., Lee, J. Y. and Kim, J. H., "Evaluation of a High Surface Area Acetone/Pentane Precipitation Process for the Purification of Paclitaxel from Plant Cell Cultures," Sep. Purif. Technol., 89, 112-116(2012). https://doi.org/10.1016/j.seppur.2012.01.017
  16. Lee, J. Y. and Kim, J. H., "Influence of Crude Extract Purity and Pure Paclitaxel Content on Fractional Precipitation for Purification of Paclitaxel," Sep. Purif. Technol., 103, 8-14(2013). https://doi.org/10.1016/j.seppur.2012.10.004
  17. Lee, D. H., Kim, S. G., Mun, S. Y. and Kim, J. H., "Evaluation of Feeding and Mixing Conditions for Fractional Precipitation of Paclitaxel from Plant Cell Cultures," Process Biochem., 45, 1134-1140(2010). https://doi.org/10.1016/j.procbio.2010.04.006
  18. Gamborg, O. L., Miller, R. A. and Ojima, K., "Nutrient Requirements of Suspension Cultures of Soybean Root Cells," Exp. Cell Res., 50, 151-158(1968). https://doi.org/10.1016/0014-4827(68)90403-5
  19. Jeon, Y. L. and Kim, J. H., "Precipitation Characteristics of Paclitaxel in Solvent Systems with Different Ion Exchange Resins," Korean J. Chem. Eng., 30, 1954-1959(2013). https://doi.org/10.1007/s11814-013-0136-2
  20. Lee, J. Y. and Kim, J. H., "Development and Optimization of a Novel Simultaneous Microwave-Assisted Extraction and Adsorbent Treatment Process for Separation and Recovery of Paclitaxel from Plant Cell Cultures," Sep. Purif. Technol., 80, 240-245(2011). https://doi.org/10.1016/j.seppur.2011.05.001
  21. Hata, H., Saeki, S., Kimura, T., Sugahara, Y. and Kuroda, K., "Adsorption of Taxol into Ordered Mesoporous Silicas with Various Pore Diameters," Chem. Mater., 11, 1110-1119(1999). https://doi.org/10.1021/cm981061n

Cited by

  1. 식물세포배양으로부터 파클리탁셀 회수를 위한 무기염이 첨가된 액-액 추출 vol.54, pp.1, 2014, https://doi.org/10.9713/kcer.2016.54.1.135
  2. 식물세포배양으로부터 파클리탁셀 및 이의 반합성 전구체 10-디아세틸파클리탁셀의 분리 양상 vol.54, pp.1, 2014, https://doi.org/10.9713/kcer.2016.54.1.89
  3. 식물세포배양으로부터 파클리탁셀 회수를 위한 초음파를 이용한 액-액 추출 vol.54, pp.2, 2014, https://doi.org/10.9713/kcer.2016.54.2.229
  4. 고분자물질을 이용한 분별침전 공정에서 파클리탁셀의 입자크기 감소 vol.54, pp.2, 2014, https://doi.org/10.9713/kcer.2016.54.2.278
  5. 이온성 액체를 이용한 바이오매스 추출에 의해 얻어진 추출물의 건조 방법 vol.54, pp.3, 2014, https://doi.org/10.9713/kcer.2016.54.3.374
  6. 실로퓨트에 대한 2-피콜린의 흡착 특성 평가 vol.57, pp.2, 2014, https://doi.org/10.9713/kcer.2019.57.2.210
  7. 실로퓨트에 의한 아세나프텐 흡착에 관한 등온흡착식, 동역학 및 열역학적 특성 vol.58, pp.1, 2014, https://doi.org/10.9713/kcer.2020.58.1.127