DOI QR코드

DOI QR Code

Characteristics for Co-digestion of Food Waste and Night Soil using BMP Test

BMP실험을 이용한 음식물폐기물 및 분뇨의 병합소화 특성

  • Received : 2014.05.08
  • Accepted : 2014.06.27
  • Published : 2014.09.01

Abstract

BMP test was carried out to evaluate the characteristics for co-digestion of night soil and food waste. 6 types of sludge were tested in 30 days which were raw, excess, digested, night soil/septic tank (1:1), food waste (food : dilution water = 1:1), and mixed sludge. Bio gas was produced actively after 2 days, and continued in 2 weeks. Gas generation amount was decreased rapidly after considerable space of time. Especially maximum productivity of gas was shown in 7~8 days. The ultimate methane yields of raw, excess, digested, night soil/septic tank, food waste, and mixed sludge were 64.63, 67.49, 66.45, 72.44, 107.85, and 46.71 mL $CH_4/g$ VS respectively from Modified Gompertz model. The lag growth phase time and maximum specific methane production rate of mixed sludge were 1.88 day and 80.4 mL/day respectively. The methane potential of mixed sludge was higher than individual sludge. So high methane potential was expected by controlling mixing ratio of food waste. Besides stable operation of digestion tank and the solution of oligotrophic problem were possible.

분뇨/정화조슬러지와 음식물폐기물의 병합소화 특성을 확인하기 위하여 BMP 테스트를 실시하였다. 생슬러지, 잉여슬러지, 소화슬러지, 분뇨/정화조슬러지(1:1의 비율로 조성), 음식물폐기물(음식물 파쇄물과 희석수의 비=1:1) 및 혼합슬러지의 6개의 슬러지를 대상으로 30일간 실험을 진행하였다. 바이오가스 발생은 초기 2일 이후부터 활발히 시작되어 2주 동안 지속되는 것을 알 수 있었으며 일정 시간이 경과한 후에는 발생량이 급격히 감소하는 것을 확인하였다. 특히 7~8일 사이에 가스발생량이 최대값을 보였으며, Modified Gompertz model을 이용한 생슬러지, 잉여슬러지, 소화슬러지, 분뇨/정화조슬러지, 음식물폐기물 및 혼합슬러지의 단위메탄생산량은 각각 64.63, 67.49, 66.45, 72.44, 107.85, 46.71 mL $CH_4/g$ VS로 나타났다. 혼합슬러지의 지체성장기간은 1.88 day이었으며, 최대메탄생산속도는 80.4 mL/day로 나타났다. 따라서 메탄생성퍼텐셜을 높이기 위해서는 하수처리장의 혐기성 소화조에 투입되는 음식물폐기물의 혼합비를 조절함으로써 빈부하 문제 해결과 동시에 소화조의 안정적인 운전을 기대할 수 있을 것으로 사료된다.

Keywords

References

  1. Angelidaki, I. and Ahring, B. K. (1994), Anaerobic digestion of manure at different ammonia loads : Effect of temperature, Water Research, Vol. 28, No. 3, pp. 727-731. https://doi.org/10.1016/0043-1354(94)90153-8
  2. Cho, H. S. and Kim, J. Y. (2006), Methane production potential with changes of household waste composition, Journal of Korea Society of Waste Management, Vol. 23, No. 2, pp. 154-160 (in Korean).
  3. Hamzawi, N., Kennedy, K. J., and McLean, D. D. (1998), Anaerobic digestion of co-mingled municipal solid waste and sewage sludge, Water Science Technology, Vol. 3, No. 2 pp. 127-132.
  4. Jeong, D. Y., Chung M. H., and Kim, Y. J. (2009), Optimal mixing ratio of wastewater from food waste and cattle manure and hygienic aspect in batch type anaerobic digestion, Journal of the Korea Organic Resource Recycling Association, Vol. 17, No. 2, pp. 93-100 (in Korean).
  5. Kim, H. J., Jung, S. R., Park, J. K., and Lee N. H. (2008), Evaluation of anaerobic biodegradability of organic waste considering dioxin growth, Journal of Korea Society of Waste Management, Vol. 25, No. 7, pp. 652-658 (in Korean).
  6. Kim, J. K., Lee, Y. H., Kim, C. H., Jung Y. J., and Sung, N. C. (1999), The study on mixed digestion of food waste and sewage sludge, Journal of Korean Society of Environmental Engineers, Vol. 21, No. 5, pp. 951-957 (In Korean).
  7. Lawrence, A. W. and McCarty, P. L. (1969), Kinetics of methane fermentation in anaerobic treatment, Journal of Water Pollution Control Federation, Vol. 41, No. 2, pp. R1-R17.
  8. Lay, J. J., Li, Y. Y., and Noike, T. (1998), Development of bacterial population and methanogenic activity in a laboratory-scale landfill bioreactor, Water Research, Vol. 32, No. 12, pp. 3673-3679. https://doi.org/10.1016/S0043-1354(98)00137-7
  9. Meraz, R. L., Vidales, A. M., and Dominguez, A. (2004), A fractal-like kinetics equation to calculate landfill methane production, Fuel, Vol. 83, No. 1, pp. 73-80. https://doi.org/10.1016/S0016-2361(03)00212-6
  10. Owen, W. P., Stuckey, D. C., Healy, J. B., Young, L. Y., and McCarty, P. L. (1979), Bioassay for monitoring biochemical methane potential & anaerobic toxity, Water Research, Vol. 13, No. 6, pp. 485-492. https://doi.org/10.1016/0043-1354(79)90043-5
  11. Park, J. K., Jung S. R., Kang J. H., Ahn, Y. M., Jin, H. E., and Lee, N. H. (2012), A study on optimization conditions for anaerobic co-digestion of food wastes with livestock wastes, Journal of Korea Society of Waste Management, Vol. 29, No. 4, pp. 356-364 (in Korean).
  12. Shelton, D. R. and Tiedje, J. M. (1984), General method for determining anaerobic biodegradation potential, Applied and Environmental Microbiology, Vol. 47, No. 4, pp. 850-857.
  13. Sosnowski, P., Klepacz-Smolka, A., Kaczorek, K., and Ledakowicz, S. (2007), Kinetic investigations of methane co-fermentation of sewage sludge and organic fraction of municipal solid wastes, Bioresource Technology, Vol. 99, No. 13, pp. 5731-5737.
  14. Zhang, P., Zeng, G., Zhang, G., Li, Y., Zhang, B., and Fan, M. (2008), Anaerobic co-digestion of biosolids and organic fraction of municipal solid waste by sequencing batch process, Fuel Processing Technology, Vol. 89, No. 4, pp. 485-489. https://doi.org/10.1016/j.fuproc.2007.11.013