DOI QR코드

DOI QR Code

The Effect of Hydrology on Phytoplankton Assemblages and Its Adaptive Strategies in Lake Hwaseong, Estuarine Reservoir with Seawater Exchange, Korea

해수유통 중인 간척담수호 화성호에서 식물플랑크톤의 군집과 적응전략에 대한 수문학적 영향

  • Received : 2014.01.21
  • Accepted : 2014.04.22
  • Published : 2014.06.30

Abstract

A survey was carried out to understand the influence of hydrology on the composition, abundance and adaptive strategies of phytoplankton in artificial Lake Hwaseong, an estuarine reservoir with seawater exchange through a sluice. Samples were collected seven times from May to October 2012. Hydrological events (seawater exchange, rainfall) resulted in a wide variation in salinity along with nutrients and turbidity. Shifts in the dominant phytoplankton composition occurred on every survey. Chlorophyll-a ranged from 9.7 to $104.1{\mu}g\;L^{-1}$. Multivariate analysis allowed us to identify the four phases on phytoplankton community change. Phase I (May~June) was characterized by small-sized Gymnodinium sp. and Heterosigma akashiwo dominated in warm temperature and high salinity derived from seawater exchange, and followed by Cylindrotheca closterium blooms due to rainfall and winds during phase II (July and September). During phase III (August), the dominance of Oscillatoria spp. was correlated with high temperature and low salinity. Abundant cryptomonads were associated with lower temperature during phase IV (October). Adaptive strategies were identified in the phytoplankton as morphological and physiological characteristics. These strategies identified small-sized flagellates as CR-strategists, fast-growing opportunistic species, which might favor the weak stratification of lake due to the seawater exchange during phase I and IV. Dominant species during phase II and III were characterized with R-strategists, medium-sized stress-tolerant species, which might favor turbulence by river flow. The results indicate that stronger stratification following the termination of seawater exchange for the freshening might intensify the predominance of smaller flagellates. In conclusion, this study suggests that hydrology may drive phytoplankton community change and blooms through the controls of salinity, turbulence and nutrients.

해수유통 중인 화성호에서 수문학적 변동이 식물플랑크톤 군집과 적응전략에 미치는 영향을 파악하기 위하여 2012년 5월부터 10월까지 7회에 걸쳐 식물플랑크톤 종조성, 생물량, 환경변수를 조사하였다. 수문학적 이벤트 (해수유통, 강수량)는 화성호의 급격한 염분변동 (2.9~29.1 psu)과 함께 영양염, 투명도를 조절하였다. 식물플랑크톤 종조성은 매 조사마다 강 (class) 수준에서 급격히 변하였고, 클로로필-a는 $9.7{\sim}104.1{\mu}g\;L^{-1}$의 범위로 6월에 낮고 9월에 높았다. 다변량 분석결과, 식물플랑크톤 천이는 4개의 시기로 구분되었다. Phase I (5~6월)은 해수유통이 빈번한 고염-중온 시기로, 작은 크기의 Gymnodinium sp., Heterosigma akashiwo이 우점하였다. Phase II (7월, 9월)에는 집중호우와 바람의 영향으로 Cylindrotheca closterium가 우점하였고, Phase III (8월)에는 저염-고온 시기로 Oscillatoria spp.가 우점하였으며, Phase IV (10월)는 해수유통이 다시 증가하고 수온이 급감하면서 작은 편모조류인 unid. cryptomonad가 우점하였다. 화성호 식물플랑크톤 군집은 형태적, 생리적 특성에 따라 구분되는 세가지 적응전략, 즉 C (colonist-invasives), S (stress-tolerants), R (ruderals)전략에 따라 구분되었다. Phase I와 IV의 우점종은 CR-전략종으로써, 약한 성층조건을 선호하는 작은 크기의 기회종이였고, Phase II와 III의 우점종은 R-전략종으로써, 유입하천수의 교란에 적응된 중간 크기의 종이다. 이 결과는 향후 해수유통차단에 의한 성층강화가 현재의 식물플랑크톤 군집을 더 작은 편모조류의 극우점으로 변화시킬 수 있음을 보여주었다. 결론적으로 화성호의 수문학적 이벤트(해수유통, 강수량)는 염분, 영양염, 성층환경 교란을 조절함으로써 식물플랑크톤의 천이와 대발생을 이끄는 중요한 요인임을 제시한다.

Keywords

References

  1. Alves-de-Souza, C., M.T. Gonzalez and J.L. Iriarte. 2008. Functional groups in marine phytoplankton assemblages dominated by diatoms in fjords of southern Chile. Journal of Plankton Research 30: 1233-1243. https://doi.org/10.1093/plankt/fbn079
  2. Anneville, O., S. Souissi and F. Ibanez. 2002. Temporal mapping of phytoplankton assemblages in Lake Geneva: annual and interannual changes in their patterns of succession. Limnology and Oceanography 47: 1355-1366. https://doi.org/10.4319/lo.2002.47.5.1355
  3. APHA. 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association.
  4. Apoya-Horton, M.D., L. Yin, G.J.C. Underwood and M.R. Gretz. 2006. Movement modalities and responses to environmental changes of the mudflat diatom Cylindrotheca closterium( bacillariophyceae). Journal of Phycology 42: 379-390. https://doi.org/10.1111/j.1529-8817.2006.00194.x
  5. Bonilla, S., D. Conde, L. Aubriot, M. del Carmen Perez and M.D.C. Perez. 2005. Influence of hydrology on phytoplankton species composition and life strategies in a subtropical coastal lagoon periodically connected with the Atlantic Ocean. Estuaries 28: 884-895. https://doi.org/10.1007/BF02696017
  6. Choi, C.H., S.W. Jung, S.M. Yun, S.H. Kim and J.G. Park. 2013. Changes in phytoplankton communities and environmental factors in Saemangeum artificial lake, South Korea between 2006 and 2009. Environmental Biology Research 31: 213-224. https://doi.org/10.11626/KJEB.2013.31.3.213
  7. Choi, J.K., E.H. Lee, J.H. Noh and S.H. Huh. 1997. The study on the phytoplankton bloom and primary productivity in Lake Shihwa and adjacent coastal areas. [The Sea] The Journal of the Korean Society of Oceanography 2: 78-86.
  8. Choi, J.H., K.Y. Kim and D.B. Hong. 2000. Impact of seawater inflow on the temperature and salinity in Shihwa Lake, Korea. Journal of Korean Earth Science Society 21: 541-552.
  9. Chung, M.H., H.S. Kim, C.I. Choi and S.J. Hwang. 2004. Phytoplankton and environmental factors in Lake Hwaong. Korean Journal of Limnology 37: 193-204.
  10. De Jonge, V.N. and J.E.E. Van Beusekom. 1995. Wind-and tideinduced resuspension of sediment and microphytobenthos from tidal flats in the Ems estuary. Limnology and Oceanography 40: 766-778.
  11. Fukuyo, Y., H. Takano, M. Chihara and K. Matsuoka. 1990. Redtide organisms in Japan, An illustrated taxonomic guide, Uchida Rokakuho.
  12. Hillebrand, H., C.D. Dürselen, D. Kirschtel, U. Pollingher and T. Zohary. 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403-424. https://doi.org/10.1046/j.1529-8817.1999.3520403.x
  13. Hirose, H., T. Yamagishi, M. Akiyama, T. Ioriya, K. Imahori, H. Kasaki, S. Kumano, H. Kobayasi, E. Takahashi, K. Tsumura and M. Hirano. 1977. Illustrations of the Japanese Freshwater Algae, Uchidarokakuho Publishing Co., Ltd.
  14. Hwang, S.J., H.S. Kim, M.H. Chung and C.I. Choi. 2003. Water quality and chlorophyll-a at the birth stage of a large reclaimed estuarine lake in Korea (Lake Hwaong). Korean Journal of Limnology 36: 455-462.
  15. Kang, N.S., K.H. Lee, H.J. Jeong, Y.D. Yoo, K.A. Seong, E. Potvin, Y.J. Hwang and E.Y. Yoon. 2013. Red tides in Shiwha Bay, western Korea: A huge dike and tidal power plant established in a semi-enclosed embayment system. Harmful Algae 30: S114-S130. https://doi.org/10.1016/j.hal.2013.10.011
  16. Karadzic, V., G. Subakov-Simic, J. Krizmanic and D. Natic. 2010. Phytoplankton and eutrophication development in the water supply reservoirs Garasi and Bukulja (Serbia). Desalination 255: 91-96. https://doi.org/10.1016/j.desal.2010.01.009
  17. Kim, H.S., D.S. Kong and S.J. Hwang. 2005. Characteristic community dynamics of phyto-and zooplankton in a shallow eutrophic reservoir. Korean Journal of Limnology 38: 18-29.
  18. Kingston, M.B. 2009. Growth and motility of the diatom Cylindrotheca closterium: Implications for commercial applications. Journal of the North Carolina Academy of Science 125: 138-142.
  19. Korea Rural Community Corporation (KRC). 2011. Report for water qaulity management of freshwater lake in the Hwaong regional reclamation development project, Gyeonggi, Korea.
  20. Korean Ministry of Environment (KME). 2008. The Korean standard method of environmental pollutions for water quality.
  21. Lorenzen, C.J. 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnology and Oceanography 12: 343-346. https://doi.org/10.4319/lo.1967.12.2.0343
  22. Mallin, M.A. 1994. Phytoplankton ecology of North Carolina estuaries. Estuaries 17: 561-574. https://doi.org/10.2307/1352404
  23. Moita, M.T., P.B. Oliveira, J.C. Mendes and A.S. Palma. 2003. Distribution of chlorophyll a and Gymnodinium catenatum associated with coastal upwelling plumes off central Portugal. Acta Oecologica 24: S125-S132. https://doi.org/10.1016/S1146-609X(03)00011-0
  24. Reynolds, C.S. 1991. Functional morphology and adaptative strategies of freshwater phytoplankton, p. 388-426. In: Growth and Reproductive Strategies of Freshwater Phytoplankton (Sandgren, C. ed.). Cambridge University Press.
  25. Robarts, R.D. and T. Zohary. 1987. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloomforming cyanobacteria. New Zealand Journal of Marine and Freshwater Research 21: 391-399. https://doi.org/10.1080/00288330.1987.9516235
  26. Seo, D. 1997. Analysis of water quality problems in the Sihwa Lake, Korea. Korean Journal of Limnology 30: 518-523.
  27. Shin, J.K., D.S. Kim and K.J. Cho. 2000. Dynamics of inorganic nutrients and phytoplankton in Shihwa Reservoir. Korean Journal of Limnology 33: 109-118.
  28. Shin, J.K., S.J. Hwang and C.G. Yoon. 2006. Spatial structure and seasonal variation of temperature and salinity in the early stage of reclaimed brackish lake (Hwaong Reservoir). Korean Journal of Limnology 39: 352-365.
  29. Shin, Y.K. and S. Jun. 2002. Ecological studies on the Asan Reservoir 1, Physicochemical characteristics and trophic Status. Korean Journal of Limnology 35: 181-186.
  30. Smayda, T.J. and C.S. Reynolds. 2001. Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. Journal of Plankton Research 23: 447-461. https://doi.org/10.1093/plankt/23.5.447
  31. Stevic, F., M. Mihaljevic and D. Spoljari´c. 2013. Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbations. Hydrobiologia 709: 143-158. https://doi.org/10.1007/s10750-013-1444-6
  32. Ter Braak, C. and P. Smilauer. 2002. CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5), Microcomputer Power.
  33. Tolotti, M., A. Boscaini and N. Salmaso. 2009. Comparative analysis of phytoplankton patterns in two modified lakes with contrasting hydrological features. Aquatic Sciences 72: 213-226.
  34. Tomas, C.R. 1997. Identifying Marine Phytoplankton, 1st ed. Academic Press.
  35. Underwood, G.J.C., M. Boulcott, C.A. Raines and K. Waldron. 2004. Environmental effects on exopolymer production by marine benthic diatoms: Dynamics, changes in composition, and pathways of production. Journal of Phycology 40: 293-304. https://doi.org/10.1111/j.1529-8817.2004.03076.x
  36. Zhu, W., Y. Pan, J. Tao, X. Li, X. Xu, Y. Wang and Q. Wang. 2013. Phytoplankton community and succession in a newly man-made shallow lake, Shanghai, China. Aquatic Ecology 47: 137-147. https://doi.org/10.1007/s10452-013-9430-7