DOI QR코드

DOI QR Code

A Review on Chemical-Induced Inflammatory Bowel Disease Models in Rodents

  • Randhawa, Puneet Kaur (Department of Pharmaceutical Sciences and Drug Research, Punjabi University) ;
  • Singh, Kavinder (Department of Pharmaceutical Sciences and Drug Research, Punjabi University) ;
  • Singh, Nirmal (Department of Pharmaceutical Sciences and Drug Research, Punjabi University) ;
  • Jaggi, Amteshwar Singh (Department of Pharmaceutical Sciences and Drug Research, Punjabi University)
  • Received : 2014.03.27
  • Accepted : 2014.06.14
  • Published : 2014.08.30

Abstract

Ulcerative colitis and Crohn's disease are a set of chronic, idiopathic, immunological and relapsing inflammatory disorders of the gastrointestinal tract referred to as inflammatory bowel disorder (IBD). Although the etiological factors involved in the perpetuation of IBD remain uncertain, development of various animal models provides new insights to unveil the onset and the progression of IBD. Various chemical-induced colitis models are widely used on laboratory scale. Furthermore, these models closely mimic morphological, histopathological and symptomatical features of human IBD. Among the chemical-induced colitis models, trinitrobenzene sulfonic acid (TNBS)-induced colitis, oxazolone induced-colitis and dextran sulphate sodium (DSS)-induced colitis models are most widely used. TNBS elicits Th-1 driven immune response, whereas oxazolone predominantly exhibits immune response of Th-2 phenotype. DSS-induced colitis model also induces changes in Th-1/Th-2 cytokine profile. The present review discusses the methodology and rationale of using various chemical-induced colitis models for evaluating the pathogenesis of IBD.

Keywords

References

  1. Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, Benchimol EI, Panaccione R, Ghosh S, Barkema HW, Kaplan GG. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142:46-54. https://doi.org/10.1053/j.gastro.2011.10.001
  2. Busch K, Ludvigsson JF, Ekstrom-Smedby K, Ekbom A, Askling J, Neovius M. Nationwide prevalence of inflammatory bowel disease in Sweden: a population-based register study. Aliment Pharmacol Ther. 2014;39:57-68. https://doi.org/10.1111/apt.12528
  3. Koch TR, Yuan LX, Stryker SJ, Ratliff P, Telford GL, Opara EC. Total antioxidant capacity of colon in patients with chronic ulcerative colitis. Dig Dis Sci. 2000;45:1814-1819. https://doi.org/10.1023/A:1005517824877
  4. Cetinkaya A, Bulbuloglu E, Kantarceken B, Ciralik H, Kurutas EB, Buyukbese MA, Gumusalan Y. Effects of L-carnitine on oxidant/antioxidant status in acetic acidinduced colitis. Dig Dis Sci. 2006;51:488-494. https://doi.org/10.1007/s10620-006-3160-9
  5. Danese S, Angelucci E. New and emerging biologics in the treatment of inflammatory bowel disease: quo vadis? Gastroenterol Clin Biol. 2009;33 Suppl 3:S217-227. https://doi.org/10.1016/S0399-8320(09)73157-4
  6. Carter MJ, Lobo AJ, Travis SP; IBD Section, British Society of Gastroenterology. Guidelines for the management of inflammatory bowel disease in adults. Gut. 2004;53 Suppl 5:V1-16. https://doi.org/10.1136/gut.2004.043372
  7. Fuss IJ, Neurath M, Boirivant M, Klein JS, de la Motte C, Strong SA, Fiocchi C, Strober W. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol. 1996;157: 1261-1270.
  8. Parronchi P, Romagnani P, Annunziato F, Sampognaro S, Becchio A, Giannarini L, Maggi E, Pupilli C, Tonelli F, Romagnani S. Type 1 T-helper cell predominance and interleukin-12 expression in the gut of patients with Crohn's disease. Am J Pathol. 1997;150:823-832.
  9. Katz LH, Kopylov U, Fudim E, Yavzori M, Picard O, Ungar B, Eliakim R, Ben-Horin S, Chowers Y. Expression of IL-2, IL-17 and TNF-alpha in patients with Crohn's disease treated with anti-TNF antibodies. Clin Res Hepatol Gastroenterol. 2014. [Epub ahead of print]
  10. Papaconstantinou I, Zeglinas C, Gazouli M, Nastos K, Yiallourou A, Papalois A, Tzathas C. The impact of perioperative anti-TNF treatment on anastomosis-related complications in Crohn's disease patients. A critical review. J Gastrointest Surg. 2014;18:1216-1224. https://doi.org/10.1007/s11605-014-2487-3
  11. Camoglio L, Te Velde AA, Tigges AJ, Das PK, Van Deventer SJ. Altered expression of interferon-gamma and interleukin-4 in inflammatory bowel disease. Inflamm Bowel Dis. 1998;4: 285-290. https://doi.org/10.1097/00054725-199811000-00005
  12. Melgar S, Yeung MM, Bas A, Forsberg G, Suhr O, Oberg A, Hammarstrom S, Danielsson A, Hammarstrom ML. Overexpression of interleukin 10 in mucosal T cells of patients with active ulcerative colitis. Clin Exp Immunol. 2003;134:127-137. https://doi.org/10.1046/j.1365-2249.2003.02268.x
  13. Fuss IJ, Heller F, Boirivant M, Leon F, Yoshida M, Fichtner-Feigl S, Yang Z, Exley M, Kitani A, Blumberg RS, Mannon P, Strober W. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest. 2004;113:1490-1497. https://doi.org/10.1172/JCI19836
  14. Rana SV, Sharma S, Kaur J, Prasad KK, Sinha SK, Kochhar R, Malik A, Morya RK. Relationship of cytokines, oxidative stress and GI motility with bacterial overgrowth in ulcerative colitis patients. J Crohns Colitis. 2014. [Epub ahead of print]
  15. Ellrichmann M, Wietzke-Braun P, Dhar S, Nikolaus S, Arlt A, Bethge J, Kuehbacher T, Wintermeyer L, Balschun K, Klapper W, Schreiber S, Fritscher-Ravens A. Endoscopic ultrasound of the colon for the differentiation of Crohn's disease and ulcerative colitis in comparison with healthy controls. Aliment Pharmacol Ther. 2014;39:823-833. https://doi.org/10.1111/apt.12671
  16. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology. 1989;96: 795-803. https://doi.org/10.1016/S0016-5085(89)80079-4
  17. da Silva MS, Sanchez-Fidalgo S, Talero E, Cardeno A, da Silva MA, Villegas W, Souza Brito AR, de La Lastra CA. Antiinflammatory intestinal activity of Abarema cochliacarpos (Gomes) Barneby & Grimes in TNBS colitis model. J Ethnopharmacol. 2010;128:467-475. https://doi.org/10.1016/j.jep.2010.01.024
  18. de Almeida AB, Sanchez-Hidalgo M, Martin AR, Luiz-Ferreira A, Trigo JR, Vilegas W, dos Santos LC, Souza-Brito AR, de la Lastra CA. Anti-inflammatory intestinal activity of Arctium lappa L. (Asteraceae) in TNBS colitis model. J Ethnopharmacol. 2013;146:300-310. https://doi.org/10.1016/j.jep.2012.12.048
  19. Moncada DM, Kammanadiminti SJ, Chadee K. Mucin and Toll-like receptors in host defense against intestinal parasites. Trends Parasitol. 2003;19:305-311. https://doi.org/10.1016/S1471-4922(03)00122-3
  20. Dharmani P, Leung P, Chadee K. Tumor necrosis factor-${\alpha}$ and Muc2 mucin play major roles in disease onset and progression in dextran sodium sulphate-induced colitis. PLoS One. 2011; 6:e25058. https://doi.org/10.1371/journal.pone.0025058
  21. Cheah KY, Bastian SE, Acott TM, Abimosleh SM, Lymn KA, Howarth GS. Grape seed extract reduces the severity of selected disease markers in the proximal colon of dextran sulphate sodium-induced colitis in rats. Dig Dis Sci. 2013;58: 970-977. https://doi.org/10.1007/s10620-012-2464-1
  22. Zhang HQ, Ding TT, Zhao JS, Yang X, Zhang HX, Zhang JJ, Cui YL. Therapeutic effects of Clostridium butyricum on experimental colitis induced by oxazolone in rats. World J Gastroenterol. 2009;15:1821-1828. https://doi.org/10.3748/wjg.15.1821
  23. Yang J, Zhao J, Nakaguchi T, Gregersen H. Biomechanical changes in oxazolone-induced colitis in BALB/C mice. J Biomech. 2009;42:811-817. https://doi.org/10.1016/j.jbiomech.2009.01.028
  24. Lee J, Yamamoto T, Kuramoto H, Kadowaki M. TRPV1 expressing extrinsic primary sensory neurons play a protective role in mouse oxazolone-induced colitis. Auton Neurosci. 2012;166:72-76. https://doi.org/10.1016/j.autneu.2011.07.008
  25. Millar AD, Rampton DS, Chander CL, Claxson AW, Blades S, Coumbe A, Panetta J, Morris CJ, Blake DR. Evaluating the antioxidant potential of new treatments for inflammatory bowel disease using a rat model of colitis. Gut. 1996;39: 407-415. https://doi.org/10.1136/gut.39.3.407
  26. Hagar HH, El-Medany A, El-Eter E, Arafa M. Ameliorative effect of pyrrolidinedithiocarbamate on acetic acid-induced colitis in rats. Eur J Pharmacol. 2007;554:69-77. https://doi.org/10.1016/j.ejphar.2006.09.066
  27. Mousavizadeh K, Rahimian R, Fakhfouri G, Aslani FS, Ghafourifar P. Anti-inflammatory effects of 5-HT receptor antagonist, tropisetron on experimental colitis in rats. Eur J Clin Invest. 2009;39:375-383. https://doi.org/10.1111/j.1365-2362.2009.02102.x
  28. Al-Rejaie SS, Abuohashish HM, Al-Enazi MM, Al-Assaf AH, Parmar MY, Ahmed MM. Protective effect of naringenin on acetic acid-induced ulcerative colitis in rats. World J Gastroenterol. 2013;19:5633-5644. https://doi.org/10.3748/wjg.v19.i34.5633
  29. Narushima S, Spitz DR, Oberley LW, Toyokuni S, Miyata T, Gunnett CA, Buettner GR, Zhang J, Ismail H, Lynch RG, Berg DJ. Evidence for oxidative stress in NSAID-induced colitis in IL10-/- mice. Free Radic Biol Med. 2003;34:1153-1166. https://doi.org/10.1016/S0891-5849(03)00065-0
  30. Pawar AT, Anap RM, Ghodasara JV, Kuchekar BS. Protective Effect of Hydroalcoholic Root Extract of Rubia cordifolia in Indomethacin-Induced Enterocolitis in Rats. Indian J Pharm Sci. 2011;73:250-253. https://doi.org/10.4103/0250-474X.91577
  31. Moyana TN, Lalonde JM. Carrageenan-induced intestinal injury in the rat--a model for inflammatory bowel disease. Ann Clin Lab Sci. 1990;20:420-426.
  32. Pricolo VE, Madhere SM, Finkelstein SD, Reichner JS. Effects of lambda-carrageenan induced experimental enterocolitis on splenocyte function and nitric oxide production. J Surg Res. 1996;66:6-11. https://doi.org/10.1006/jsre.1996.0364
  33. Fitzpatrick LR, Wang J, Le T. Gliotoxin, an inhibitor of nuclear factor-kappa B, attenuates peptidoglycan-polysaccharide-induced colitis in rats. Inflamm Bowel Dis. 2002; 8:159-167. https://doi.org/10.1097/00054725-200205000-00001
  34. Reingold L, Rahal K, Schmiedlin-Ren P, Rittershaus AC, Bender D, Owens SR, Adler J, Zimmermann EM. Development of a peptidoglycan-polysaccharide murine model of Crohn's disease: effect of genetic background. Inflamm Bowel Dis. 2013;19:1238-1244. https://doi.org/10.1097/MIB.0b013e31828132b4
  35. Cheon GJ, Cui Y, Yeon DS, Kwon SC, Park BG. Mechanisms of motility change on trinitrobenzenesulfonic Acid-induced colonic inflammation in mice. Korean J Physiol Pharmacol. 2012;16:437-446. https://doi.org/10.4196/kjpp.2012.16.6.437
  36. Isik F, Tunali Akbay T, Yarat A, Genc Z, Pisiriciler R, Caliskan-Ak E, Cetinel S, Altintas A, Sener G. Protective effects of black cumin (Nigella sativa) oil on TNBS-induced experimental colitis in rats. Dig Dis Sci. 2011;56:721-730. https://doi.org/10.1007/s10620-010-1333-z
  37. Elson CO, Sartor RB, Tennyson GS, Riddell RH. Experimental models of inflammatory bowel disease. Gastroenterology. 1995;109:1344-1367. https://doi.org/10.1016/0016-5085(95)90599-5
  38. Yu Q, Zhu S, Zhou R, Yi F, Bing Y, Huang S, Wang Z, Wang C, Xia B. Effects of sinomenine on the expression of microRNA-155 in 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice. PLoS One. 2013;8:e73757. https://doi.org/10.1371/journal.pone.0073757
  39. Neurath MF, Fuss I, Kelsall BL, Stuber E, Strober W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med. 1995;182:1281-1290. https://doi.org/10.1084/jem.182.5.1281
  40. Boirivant M, Fuss IJ, Chu A, Strober W. Oxazolone colitis: A murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med. 1998;188:1929-1939. https://doi.org/10.1084/jem.188.10.1929
  41. Dohi T, Fujihashi K, Kiyono H, Elson CO, McGhee JR. Mice deficient in Th1- and Th2-type cytokines develop distinct forms of hapten-induced colitis. Gastroenterology. 2000;119: 724-733. https://doi.org/10.1053/gast.2000.16500
  42. Qin HY, Wu JC, Tong XD, Sung JJ, Xu HX, Bian ZX. Systematic review of animal models of post-infectious/postinflammatory irritable bowel syndrome. J Gastroenterol. 2011;46:164-174. https://doi.org/10.1007/s00535-010-0321-6
  43. Ikeda M, Takeshima F, Isomoto H, Shikuwa S, Mizuta Y, Ozono Y, Kohno S. Simvastatin attenuates trinitrobenzene sulfonic acid-induced colitis, but not oxazalone-induced colitis. Dig Dis Sci. 2008;53:1869-1875. https://doi.org/10.1007/s10620-007-0102-0
  44. Takagi T, Naito Y, Mizushima K, Akagiri S, Suzuki T, Hirata I, Omatsu T, Handa O, Kokura S, Ichikawa H, Yoshikawa T. Inhalation of carbon monoxide ameliorates TNBS-induced colitis in mice through the inhibition of TNF-${\alpha}$ expression. Dig Dis Sci. 2010;55:2797-2804. https://doi.org/10.1007/s10620-009-1112-x
  45. Martinez-Moya P, Romero-Calvo I, Requena P, HernandezChirlaque C, Aranda CJ, Gonzalez R, Zarzuelo A, Suarez MD, Martinez-Augustin O, Marin JJ, de Medina FS. Dosedependent antiinflammatory effect of ursodeoxycholic acid in experimental colitis. Int Immunopharmacol. 2013;15:372-380. https://doi.org/10.1016/j.intimp.2012.11.017
  46. Park SY, Ku SK, Lee ES, Kim JA. 1,3-Diphenylpropenone ameliorates TNBS-induced rat colitis through suppression of NF-${\kappa}$B activation and IL-8 induction. Chem Biol Interact. 2012;196:39-49. https://doi.org/10.1016/j.cbi.2012.02.002
  47. Liu DY, Guan YM, Zhao HM, Yan DM, Tong WT, Wan PT, Zhu WF, Liu HN, Liang XL. The protective and healing effects of Si Shen Wan in trinitrobenzene sulphonic acid-induced colitis. J Ethnopharmacol. 2012;143:435-440. https://doi.org/10.1016/j.jep.2012.05.060
  48. Yang XL, Guo TK, Wang YH, Gao MT, Qin H, Wu YJ. Therapeutic effect of ginsenoside Rd in rats with TNBSinduced recurrent ulcerative colitis. Arch Pharm Res. 2012;35:1231-1239. https://doi.org/10.1007/s12272-012-0714-6
  49. Jurjus AR, Khoury NN, Reimund JM. Animal models of inflammatory bowel disease. J Pharmacol Toxicol Methods. 2004;50:81-92. https://doi.org/10.1016/j.vascn.2003.12.002
  50. Gaudio E, Taddei G, Vetuschi A, Sferra R, Frieri G, Ricciardi G, Caprilli R. Dextran sulfate sodium (DSS) colitis in rats: clinical, structural, and ultrastructural aspects. Dig Dis Sci. 1999;44:1458-1475. https://doi.org/10.1023/A:1026620322859
  51. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98:694-702. https://doi.org/10.1016/0016-5085(90)90290-H
  52. Tran CD, Ball JM, Sundar S, Coyle P, Howarth GS. The role of zinc and metallothionein in the dextran sulfate sodiuminduced colitis mouse model. Dig Dis Sci. 2007;52:2113-2121. https://doi.org/10.1007/s10620-007-9765-9
  53. Perše M, Cerar A. Dextran sodium sulphate colitis mouse model: traps and tricks. J Biomed Biotechnol. 2012;2012:718617.
  54. Geier MS, Smith CL, Butler RN, Howarth GS. Smallintestinal manifestations of dextran sulfate sodium consumption in rats and assessment of the effects of Lactobacillus fermentum BR11. Dig Dis Sci. 2009;54:1222-1228. https://doi.org/10.1007/s10620-008-0495-4
  55. Ohtsuka Y, Sanderson IR. Dextran sulfate sodium-induced inflammation is enhanced by intestinal epithelial cell chemokine expression in mice. Pediatr Res. 2003;53:143-147.
  56. Ni J, Chen SF, Hollander D. Effects of dextran sulphate sodium on intestinal epithelial cells and intestinal lymphocytes. Gut. 1996;39:234-241. https://doi.org/10.1136/gut.39.2.234
  57. Dai C, Zheng CQ, Meng FJ, Zhou Z, Sang LX, Jiang M. VSL#3 probiotics exerts the anti-inflammatory activity via PI3k/Akt and NF-${\kappa}$B pathway in rat model of DSS-induced colitis. Mol Cell Biochem. 2013;374:1-11. https://doi.org/10.1007/s11010-012-1488-3
  58. Andujar I, Rios JL, Giner RM, Miguel Cerda J, Recio Mdel C. Beneficial effect of shikonin on experimental colitis induced by dextran sulfate sodium in BALB/c mice. Evid Based Complement Alternat Med. 2012;2012:271606.
  59. Dieleman LA, Palmen MJ, Akol H, Bloemena E, Pena AS, Meuwissen SG, Van Rees EP. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol. 1998;114: 385-391. https://doi.org/10.1046/j.1365-2249.1998.00728.x
  60. Melgar S, Karlsson A, Michaëlsson E. Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. Am J Physiol Gastrointest Liver Physiol. 2005; 288:G1328-1338. https://doi.org/10.1152/ajpgi.00467.2004
  61. Perse M, Cerar A. Dextran sodium sulphate colitis mouse model: traps and tricks. J Biomed Biotechnol. 2012;2012:718617.
  62. Morgan ME, Zheng B, Koelink PJ, van de Kant HJ, Haazen LC, van Roest M, Garssen J, Folkerts G, Kraneveld AD. New perspective on dextran sodium sulfate colitis: antigen-specific T cell development during intestinal inflammation. PLoS One. 2013;8:e69936. https://doi.org/10.1371/journal.pone.0069936
  63. Dong F, Zhang L, Hao F, Tang H, Wang Y. Systemic responses of mice to dextran sulfate sodium-induced acute ulcerative colitis using 1H NMR spectroscopy. J Proteome Res. 2013; 12:2958-2966. https://doi.org/10.1021/pr4002383
  64. Michel V, Yuan Z, Ramsubir S, Bakovic M. Choline transport for phospholipid synthesis. Exp Biol Med (Maywood). 2006; 231:490-504. https://doi.org/10.1177/153537020623100503
  65. Poritz LS, Garver KI, Green C, Fitzpatrick L, Ruggiero F, Koltun WA. Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. J Surg Res. 2007;140:12-19. https://doi.org/10.1016/j.jss.2006.07.050
  66. Singh K, Jaggi AS, Singh N. Exploring the ameliorative potential of Punica granatum in dextran sulfate sodium induced ulcerative colitis in mice. Phytother Res. 2009;23:1565-1574. https://doi.org/10.1002/ptr.2822
  67. Dieleman LA, Pena AS, Meuwissen SG, van Rees EP. Role of animal models for the pathogenesis and treatment of inflammatory bowel disease. Scand J Gastroenterol Suppl. 1997;223:99-104.
  68. Rijcken EM, Laukoetter MG, Anthoni C, Meier S, Mennigen R, Spiegel HU, Bruewer M, Senninger N, Vestweber D, Krieglstein CF. Immunoblockade of PSGL-1 attenuates established experimental murine colitis by reduction of leukocyte rolling. Am J Physiol Gastrointest Liver Physiol. 2004;287: G115-124. https://doi.org/10.1152/ajpgi.00207.2003
  69. Iwaya H, Fujii N, Hagio M, Hara H, Ishizuka S. Contribution of dipeptidyl peptidase IV to the severity of dextran sulfate sodium-induced colitis in the early phase. Biosci Biotechnol Biochem. 2013;77:1461-1466. https://doi.org/10.1271/bbb.130105
  70. Kumar G K, Dhamotharan R, Kulkarni NM, Honnegowda S, Murugesan S. Embelin ameliorates dextran sodium sulfateinduced colitis in mice. Int Immunopharmacol. 2011;11:724-731. https://doi.org/10.1016/j.intimp.2011.01.022
  71. Coburn LA, Gong X, Singh K, Asim M, Scull BP, Allaman MM, Williams CS, Rosen MJ, Washington MK, Barry DP, Piazuelo MB, Casero RA Jr, Chaturvedi R, Zhao Z, Wilson KT. L-arginine supplementation improves responses to injury and inflammation in dextran sulfate sodium colitis. PLoS One. 2012;7:e33546. https://doi.org/10.1371/journal.pone.0033546
  72. Laroui H, Ingersoll SA, Liu HC, Baker MT, Ayyadurai S, Charania MA, Laroui F, Yan Y, Sitaraman SV, Merlin D. Dextran sodium sulfate (DSS) induces colitis in mice by forming nano-lipocomplexes with medium-chain-length fatty acids in the colon. PLoS One. 2012;7:e32084. https://doi.org/10.1371/journal.pone.0032084
  73. Jadhav SR, Shandilya UK, Kansal VK. Exploring the ameliorative potential of probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum on dextran sodium sulphate induced colitis in mice. J Dairy Res. 2013; 80:21-27. https://doi.org/10.1017/S0022029912000684
  74. Kleiveland CR, Hult LT, Spetalen S, Kaldhusdal M, Christofferesen TE, Bengtsson O, Romarheim OH, Jacobsen M, Lea T. The noncommensal bacterium Methylococcus capsulatus (Bath) ameliorates dextran sulfate (Sodium Salt)-Induced Ulcerative Colitis by influencing mechanisms essential for maintenance of the colonic barrier function. Appl Environ Microbiol. 2013;79:48-56. https://doi.org/10.1128/AEM.02464-12
  75. Kohnke T, Gomolka B, Bilal S, Zhou X, Sun Y, Rothe M, Baumgart DC, Weylandt KH. Acetylsalicylic Acid reduces the severity of dextran sodium sulfate-induced colitis and increases the formation of anti-inflammatory lipid mediators. Biomed Res Int. 2013;2013:748160.
  76. Liu L, Liu YL, Liu GX, Chen X, Yang K, Yang YX, Xie Q, Gan HK, Huang XL, Gan HT. Curcumin ameliorates dextran sulfate sodium-induced experimental colitis by blocking STAT3 signaling pathway. Int Immunopharmacol. 2013;17: 314-320. https://doi.org/10.1016/j.intimp.2013.06.020
  77. Kato E, Yamane S, Nomura R, Matsumoto K, Tashima K, Horie S, Saito T, Fujino H, Murayama T. Dysfunction of neurogenic VIP-mediated relaxation in mouse distal colon with dextran sulfate sodium-induced colitis. Pharmacol Res. 2012;65:204-212. https://doi.org/10.1016/j.phrs.2011.09.004
  78. Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest. 1993;69:238-249.
  79. Giner E, Recio MC, Rios JL, Giner RM. Oleuropein protects against dextran sodium sulfate-induced chronic colitis in mice. J Nat Prod. 2013;76:1113-1120. https://doi.org/10.1021/np400175b
  80. Trivedi PP, Jena GB. Dextran sulfate sodium-induced ulcerative colitis leads to increased hematopoiesis and induces both local as well as systemic genotoxicity in mice. Mutat Res. 2012;744:172-183. https://doi.org/10.1016/j.mrgentox.2012.03.001
  81. Kojima R, Kuroda S, Ohkishi T, Nakamaru K, Hatakeyama S. Oxazolone-induced colitis in BALB/C mice: a new method to evaluate the efficacy of therapeutic agents for ulcerative colitis. J Pharmacol Sci. 2004;96:307-313. https://doi.org/10.1254/jphs.FP0040214
  82. Engel MA, Khalil M, Siklosi N, Mueller-Tribbensee SM, Neuhuber WL, Neurath MF, Becker C, Reeh PW. Opposite effects of substance P and calcitonin gene-related peptide in oxazolone colitis. Dig Liver Dis. 2012;44:24-29. https://doi.org/10.1016/j.dld.2011.08.030
  83. Charles PC, Weber KS, Cipriani B, Brosnan CF. Cytokine, chemokine and chemokine receptor mRNA expression in different strains of normal mice: implications for establishment of a Th1/Th2 bias. J Neuroimmunol. 1999;100:64-73. https://doi.org/10.1016/S0165-5728(99)00189-7
  84. Zhang HQ, Ding TT, Zhao JS, Yang X, Zhang HX, Zhang JJ, Cui YL. Therapeutic effects of Clostridium butyricum on experimental colitis induced by oxazolone in rats. World J Gastroenterol. 2009;15:1821-1828. https://doi.org/10.3748/wjg.15.1821
  85. Abdin AA. Targeting sphingosine kinase 1 (SphK1) and apoptosis by colon-specific delivery formula of resveratrol in treatment of experimental ulcerative colitis in rats. Eur J Pharmacol. 2013;718:145-153. https://doi.org/10.1016/j.ejphar.2013.08.040
  86. Huang Z, Jiang Y, Yang Y, Shao J, Sun X, Chen J, Dong L, Zhang J. 3,3'-Diindolylmethane alleviates oxazolone-induced colitis through Th2/Th17 suppression and Treg induction. Mol Immunol. 2013;53:335-344. https://doi.org/10.1016/j.molimm.2012.09.007
  87. Daniel C, Sartory NA, Zahn N, Schmidt R, Geisslinger G, Radeke HH, Stein JM. FTY720 ameliorates oxazolone colitis in mice by directly affecting T helper type 2 functions. Mol Immunol. 2007;44:3305-3316. https://doi.org/10.1016/j.molimm.2007.02.026
  88. Ma Y, Semba S, Maemoto A, Takeuchi M, Kameshita I, Ishida A, Kato S, Katoh T, Liu Y, Taniguchi T. Oxazolone-induced over-expression of focal adhesion kinase in colonic epithelial cells of colitis mouse model. FEBS Lett. 2010;584:3949-3954. https://doi.org/10.1016/j.febslet.2010.07.054
  89. MacPherson BR, Pfeiffer CJ. Experimental production of diffuse colitis in rats. Digestion. 1978;17:135-150. https://doi.org/10.1159/000198104
  90. Noa M, Mas R, Carbajal D, Valdes S. Effect of D-002 on acetic acid-induced colitis in rats at single and repeated doses. Pharmacol Res. 2000;41:391-395. https://doi.org/10.1006/phrs.1999.0596
  91. Sasaki S, Hirata I, Maemura K, Hamamoto N, Murano M, Toshina K, Katsu K. Prostaglandin E2 inhibits lesion formation in dextran sodium sulphate-induced colitis in rats and reduces the levels of mucosal inflammatory cytokines. Scand J Immunol. 2000;51:23-28. https://doi.org/10.1046/j.1365-3083.2000.00623.x
  92. Gonzalez R, Rodriguez S, Romay C, Ancheta O, Gonzalez A, Armesto J, Remirez D, Merino N. Anti-inflammatory activity of phycocyanin extract in acetic acid-induced colitis in rats. Pharmacol Res. 1999;39:55-59. https://doi.org/10.1006/phrs.1998.0409
  93. Gorgulu S, Yagci G, Kaymakcioglu N, Ozkara M, Kurt B, Ozcan A, Kaya O, Sadir S, Tufan T. Hyperbaric oxygen enhances the efficiency of 5-aminosalicylic acid in acetic acid-induced colitis in rats. Dig Dis Sci. 2006;51:480-487. https://doi.org/10.1007/s10620-006-3159-2
  94. Nakhai LA, Mohammadirad A, Yasa N, Minaie B, Nikfar S, Ghazanfari G, Zamani MJ, Dehghan G, Jamshidi H, Boushehri VS, Khorasani R, Abdollahi M. Benefits of Zataria multiflora Boiss in experimental model of mouse inflammatory bowel disease. Evid Based Complement Alternat Med. 2007;4:43-50. https://doi.org/10.1093/ecam/nel051
  95. Bitiren M, Karakilcik AZ, Zerin M, Ozardali I, Selek S, Nazligul Y, Ozgonul A, Musa D, Uzunkoy A. Protective effects of selenium and vitamin E combination on experimental colitis in blood plasma and colon of rats. Biol Trace Elem Res. 2010;136:87-95. https://doi.org/10.1007/s12011-009-8518-3
  96. Hartmann RM, Morgan Martins MI, Tieppo J, Fillmann HS, Marroni NP. Effect of Boswellia serrata on antioxidant status in an experimental model of colitis rats induced by acetic acid. Dig Dis Sci. 2012;57:2038-2044. https://doi.org/10.1007/s10620-012-2134-3
  97. Daneshmand A, Rahimian R, Mohammadi H, Ejtemaee-Mehr S, Tavangar SM, Babaei Kelishomi R, Dehpour AR. Protective effects of lithium on acetic acid-induced colitis in rats. Dig Dis Sci. 2009;54:1901-1907. https://doi.org/10.1007/s10620-008-0569-3
  98. Closa D, Folch-Puy E. Oxygen free radicals and the systemic inflammatory response. IUBMB Life. 2004;56:185-191. https://doi.org/10.1080/15216540410001701642
  99. Grisham MB, Granger DN. Neutrophil-mediated mucosal injury. Role of reactive oxygen metabolites. Dig Dis Sci. 1988; 33(3 Suppl):6S-15. https://doi.org/10.1007/BF01538126
  100. Kruidenier L, Verspaget HW. Review article: oxidative stress as a pathogenic factor in inflammatory bowel disease--radicals or ridiculous? Aliment Pharmacol Ther. 2002;16:1997-2015. https://doi.org/10.1046/j.1365-2036.2002.01378.x
  101. Wakefield AJ, Sawyerr AM, Dhillon AP, Pittilo RM, Rowles PM, Lewis AA, Pounder RE. Pathogenesis of Crohn's disease: multifocal gastrointestinal infarction. Lancet. 1989;2:1057-1062.
  102. Dhillon AP, Anthony A, Sim R, Wakefield AJ, Sankey EA, Hudson M, Allison MC, Pounder RE. Mucosal capillary thrombi in rectal biopsies. Histopathology. 1992;21:127-133. https://doi.org/10.1111/j.1365-2559.1992.tb00360.x
  103. Joshi SV, Vyas BA, Shah PD, Shah DR, Shah SA, Gandhi TR. Protective effect of aqueous extract of Oroxylum indicum Linn. (root bark) against DNBS-induced colitis in rats. Indian J Pharmacol. 2011;43:656-661.
  104. Keshavarzian A, Sedghi S, Kanofsky J, List T, Robinson C, Ibrahim C, Winship D. Excessive production of reactive oxygen metabolites by inflamed colon: analysis by chemiluminescence probe. Gastroenterology. 1992;103:177-185. https://doi.org/10.1016/0016-5085(92)91111-G
  105. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47-95. https://doi.org/10.1152/physrev.00018.2001
  106. Yalniz M, Demirel U, Orhan C, Bahcecioglu IH, Ozercan IH, Aygun C, Tuzcu M, Sahin K. Nadroparin sodium activates Nrf2/HO-1 pathway in acetic acid-induced colitis in rats. Inflammation. 2012;35:1213-1221. https://doi.org/10.1007/s10753-012-9431-z
  107. Kannan N, Guruvayoorappan C. Protective effect of Bauhinia tomentosa on acetic acid induced ulcerative colitis by regulating antioxidant and inflammatory mediators. Int Immunopharmacol. 2013;16:57-66. https://doi.org/10.1016/j.intimp.2013.03.008
  108. Iseri SO, Ersoy Y, Ercan F, Yuksel M, Atukeren P, Gumustas K, Alican I. The effect of sildenafil, a phosphodiesterase-5 inhibitor, on acetic acid-induced colonic inflammation in the rat. J Gastroenterol Hepatol. 2009;24:1142-1148. https://doi.org/10.1111/j.1440-1746.2009.05797.x
  109. Yamada Y, Marshall S, Specian RD, Grisham MB. A comparative analysis of two models of colitis in rats. Gastroenterology. 1992;102:1524-1534. https://doi.org/10.1016/0016-5085(92)91710-L
  110. Tannahill CL, Stevenot SA, Campbell-Thompson M, Nick HS, Valentine JF. Induction and immunolocalization of manganese superoxide dismutase in acute acetic acid-induced colitis in the rat. Gastroenterology. 1995;109:800-811. https://doi.org/10.1016/0016-5085(95)90387-9
  111. Mascolo N, Izzo AA, Autore G, Maiello FM, Di Carlo G, Capasso F. Acetic acid-induced colitis in normal and essential fatty acid deficient rats. J Pharmacol Exp Ther. 1995;272: 469-475.
  112. Hassan GS, Soliman GA. Design, synthesis and anti-ulcerogenic effect of some of furo-salicylic acid derivatives on acetic acid-induced ulcerative colitis. Eur J Med Chem. 2010;45: 4104-4112. https://doi.org/10.1016/j.ejmech.2010.05.071
  113. Kolgazi M, Uslu U, Yuksel M, Velioglu-Ogunc A, Ercan F, Alican I. The role of cholinergic anti-inflammatory pathway in acetic acid-induced colonic inflammation in the rat. Chem Biol Interact. 2013;205:72-80. https://doi.org/10.1016/j.cbi.2013.06.009
  114. Thippeswamy BS, Mahendran S, Biradar MI, Raj P, Srivastava K, Badami S, Veerapur VP. Protective effect of embelin against acetic acid induced ulcerative colitis in rats. Eur J Pharmacol. 2011;654:100-105. https://doi.org/10.1016/j.ejphar.2010.12.012
  115. Tahan G, Aytac E, Aytekin H, Gunduz F, Dogusoy G, Aydin S, Tahan V, Uzun H. Vitamin E has a dual effect of antiinflammatory and antioxidant activities in acetic acid-induced ulcerative colitis in rats. Can J Surg. 2011;54:333-338. https://doi.org/10.1503/cjs.013610
  116. Xing J, Sun J, You H, Lv J, Sun J, Dong Y. Anti-inflammatory effect of 3,4-oxo-isopropylidene-shikimic acid on acetic acid-induced colitis in rats. Inflammation. 2012;35:1872-1879. https://doi.org/10.1007/s10753-012-9509-7
  117. Rachmilewitz D, Karmeli F, Takabayashi K, Hayashi T, Leider-Trejo L, Lee J, Leoni LM, Raz E. Immunostimulatory DNA ameliorates experimental and spontaneous murine colitis. Gastroenterology. 2002;122:1428-1441. https://doi.org/10.1053/gast.2002.32994
  118. Niu X, Fan T, Li W, Huang H, Zhang Y, Xing W. Protective effect of sanguinarine against acetic acid-induced ulcerative colitis in mice. Toxicol Appl Pharmacol. 2013;267:256-265. https://doi.org/10.1016/j.taap.2013.01.009
  119. Fitzpatrick LR, Wang J, Le T. Caffeic acid phenethyl ester, an inhibitor of nuclear factor-kappaB, attenuates bacterial peptidoglycan polysaccharide-induced colitis in rats. J Pharmacol Exp Ther. 2001;299:915-920.
  120. Stadnicki A, Sartor RB, Janardham R, Majluf-Cruz A, Kettner CA, Adam AA, Colman RW. Specific inhibition of plasma kallikrein modulates chronic granulomatous intestinal and systemic inflammation in genetically susceptible rats. FASEB J. 1998;12:325-333. https://doi.org/10.1096/fasebj.12.3.325
  121. Kaplan AP, Kay AB, Austen KF. A prealbumin activator of prekallikrein. 3. Appearance of chemotactic activity for human neutrophils by the conversion of human prekallikrein to kallikrein. J Exp Med. 1972;135:81-97. https://doi.org/10.1084/jem.135.1.81
  122. Stadnicki A, DeLa Cadena RA, Sartor RB, Bender D, Kettner CA, Rath HC, Adam A, Colman RW. Selective plasma kallikrein inhibitor attenuates acute intestinal inflammation in Lewis rat. Dig Dis Sci. 1996;41:912-920. https://doi.org/10.1007/BF02091530
  123. McCall RD, Haskill S, Zimmermann EM, Lund PK, Thompson RC, Sartor RB. Tissue interleukin 1 and interleukin-1 receptor antagonist expression in enterocolitis in resistant and susceptible rats. Gastroenterology. 1994;106:960-972. https://doi.org/10.1016/0016-5085(94)90755-2
  124. Yamada T, Sartor RB, Marshall S, Specian RD, Grisham MB. Mucosal injury and inflammation in a model of chronic granulomatous colitis in rats. Gastroenterology. 1993;104:759-771. https://doi.org/10.1016/0016-5085(93)91011-6
  125. Marcus R, Watt J. Colonic ulceration in young rats fed degraded carrageenan. Lancet. 1971;2:765-766.
  126. Watt J, Marcus R. Experimental ulcerative disease of the colon in animals. Gut. 1973;14:506-510. https://doi.org/10.1136/gut.14.6.506
  127. Moyana T, Lalonde JM. Carrageenan-induced intestinal injury: possible role of oxygen free radicals. Ann Clin Lab Sci. 1991;21:258-263.
  128. Gross V, Arndt H, Andus T, Palitzsch KD, Scholmerich J. Free radicals in inflammatory bowel diseases pathophysiology and therapeutic implications. Hepatogastroenterology. 1994;41: 320-327.
  129. Benard C, Cultrone A, Michel C, Rosales C, Segain JP, Lahaye M, Galmiche JP, Cherbut C, Blottiere HM. Degraded carrageenan causing colitis in rats induces TNF secretion and ICAM-1 upregulation in monocytes through NF-kappaB activation. PLoS One. 2010;5:e8666. https://doi.org/10.1371/journal.pone.0008666

Cited by

  1. Cape Gooseberry [Physalis peruvianaL.] Calyces Ameliorate TNBS Acid-induced Colitis in Rats vol.9, pp.11, 2015, https://doi.org/10.1093/ecco-jcc/jjv132
  2. Intraperitoneal administration of butyrate prevents the severity of acetic acid colitis in rats vol.16, pp.3, 2014, https://doi.org/10.1631/jzus.b1400191
  3. Actions of Probiotics on Trinitrobenzenesulfonic Acid-Induced Colitis in Rats vol.2015, pp.None, 2014, https://doi.org/10.1155/2015/528523
  4. Diosmectite-zinc oxide composite improves intestinal barrier restoration and modulates TGF-β1, ERK1/2, and Akt in piglets after acetic acid challenge1 vol.93, pp.4, 2015, https://doi.org/10.2527/jas.2014-8580
  5. Challenges in animal modelling of mesenchymal stromal cell therapy for inflammatory bowel disease vol.21, pp.16, 2015, https://doi.org/10.3748/wjg.v21.i16.4779
  6. Attenuating effects of coenzyme Q10 and amlodipine in ulcerative colitis model in rats vol.37, pp.3, 2014, https://doi.org/10.3109/08923973.2015.1021357
  7. Time to Integrate to Nest Test Evaluation in a Mouse DSS-Colitis Model vol.10, pp.12, 2014, https://doi.org/10.1371/journal.pone.0143824
  8. Dysbiosis of the fecal microbiota in the TNBS-induced Crohn’s disease mouse model vol.100, pp.10, 2014, https://doi.org/10.1007/s00253-015-7205-x
  9. Function of the glycosyltransferase GnT-V in colitis vol.51, pp.4, 2014, https://doi.org/10.1007/s00535-015-1156-y
  10. Immune/Inflammatory Response and Hypocontractility of Rabbit Colonic Smooth Muscle After TNBS-Induced Colitis vol.61, pp.7, 2014, https://doi.org/10.1007/s10620-016-4078-5
  11. Treatment with a Urokinase Receptor-derived Cyclized Peptide Improves Experimental Colitis by Preventing Monocyte Recruitment and Macrophage Polarization : vol.22, pp.10, 2016, https://doi.org/10.1097/mib.0000000000000896
  12. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/2834386
  13. Synergic Interaction of Rifaximin and Mutaflor ( Escherichia coli Nissle 1917) in the Treatment of Acetic Acid-Induced Colitis in Rats vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/3126280
  14. Effects of the Sijunzi decoction on the immunological function in rats with dextran sulfate-induced ulcerative colitis vol.5, pp.1, 2014, https://doi.org/10.3892/br.2016.678
  15. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats vol.17, pp.9, 2016, https://doi.org/10.3390/ijms17091455
  16. Pro-inflammatory miR-223 mediates the cross-talk between the IL23 pathway and the intestinal barrier in inflammatory bowel disease vol.17, pp.1, 2014, https://doi.org/10.1186/s13059-016-0901-8
  17. The Dual Role of Neutrophils in Inflammatory Bowel Diseases vol.5, pp.12, 2014, https://doi.org/10.3390/jcm5120118
  18. Protective effect of cigarette smoke on the course of dextran sulfate sodium-induced colitis is accompanied by lymphocyte subpopulation changes in the blood and colon vol.32, pp.11, 2017, https://doi.org/10.1007/s00384-017-2882-9
  19. Roles of amino acids in preventing and treating intestinal diseases: recent studies with pig models vol.49, pp.8, 2014, https://doi.org/10.1007/s00726-017-2450-1
  20. Pig models on intestinal development and therapeutics vol.49, pp.12, 2014, https://doi.org/10.1007/s00726-017-2497-z
  21. Swimming attenuates inflammation, oxidative stress, and apoptosis in a rat model of dextran sulfate sodium-induced chronic colitis vol.8, pp.5, 2014, https://doi.org/10.18632/oncotarget.14080
  22. Actors and Factors in the Resolution of Intestinal Inflammation: Lipid Mediators As a New Approach to Therapy in Inflammatory Bowel Diseases vol.8, pp.None, 2014, https://doi.org/10.3389/fimmu.2017.01331
  23. Protective Effect of Pogostone on 2,4,6-Trinitrobenzenesulfonic Acid-Induced Experimental Colitis via Inhibition of T Helper Cell vol.8, pp.None, 2014, https://doi.org/10.3389/fphar.2017.00829
  24. Dietary Green Pea Protects against DSS-Induced Colitis in Mice Challenged with High-Fat Diet vol.9, pp.6, 2014, https://doi.org/10.3390/nu9050509
  25. Hydroalcoholic extract of Brazilian red propolis exerts protective effects on acetic acid-induced ulcerative colitis in a rodent model vol.85, pp.None, 2014, https://doi.org/10.1016/j.biopha.2016.11.080
  26. A phenotype of IGFBP‐3 knockout mice revealed by dextran sulfate‐induced colitis vol.32, pp.1, 2014, https://doi.org/10.1111/jgh.13461
  27. Simultaneous Determination of Three Furanocoumarins by UPLC/MS/MS: Application to Pharmacokinetic Study of Angelica dahurica Radix after Oral Administration to Normal and Experimental Colitis-Induce vol.22, pp.3, 2014, https://doi.org/10.3390/molecules22030416
  28. Therapeutic Potential of Amino Acids in Inflammatory Bowel Disease vol.9, pp.9, 2014, https://doi.org/10.3390/nu9090920
  29. MFSD2A Promotes Endothelial Generation of Inflammation-Resolving Lipid Mediators and Reduces Colitis in Mice vol.153, pp.5, 2017, https://doi.org/10.1053/j.gastro.2017.07.048
  30. Free immunoglobulin light chain (FLC) promotes murine colitis and colitis-associated colon carcinogenesis by activating the inflammasome vol.7, pp.None, 2014, https://doi.org/10.1038/s41598-017-05468-w
  31. Appropriateness of reference genes for normalizing messenger RNA in mouse 2,4-dinitrobenzene sulfonic acid (DNBS)-induced colitis using quantitative real time PCR vol.7, pp.None, 2017, https://doi.org/10.1038/srep42427
  32. Extract from mango mistletoes Dendrophthoe pentandra ameliorates TNBS-induced colitis by regulating CD4+ T cells in mesenteric lymph nodes vol.17, pp.None, 2014, https://doi.org/10.1186/s12906-017-1973-z
  33. Multifunctional theranostic applications of biocompatible green-synthesized colloidal nanoparticles vol.102, pp.10, 2014, https://doi.org/10.1007/s00253-018-8928-2
  34. Camellia Oil (Camellia oleifera Abel.) Modifies the Composition of Gut Microbiota and Alleviates Acetic Acid-Induced Colitis in Rats vol.66, pp.28, 2014, https://doi.org/10.1021/acs.jafc.8b02166
  35. Anti-Colitis Effects of Mulberry Root Bark and Mulberry Twig Extracts in High Protein Diet Fed Mice vol.28, pp.1, 2014, https://doi.org/10.17495/easdl.2018.2.28.1.47
  36. A Versatile New Model of Chemically Induced Chronic Colitis Using an Outbred Murine Strain vol.9, pp.None, 2014, https://doi.org/10.3389/fmicb.2018.00565
  37. Therapeutic Effect of Amomum villosum on Inflammatory Bowel Disease in Rats vol.9, pp.None, 2014, https://doi.org/10.3389/fphar.2018.00639
  38. Investigating Gut Permeability in Animal Models of Disease vol.9, pp.None, 2014, https://doi.org/10.3389/fphys.2018.01962
  39. T-Bet Is Dependent on Stat-4 Inhibiting Acute Colitis but Not Stat-1 Using L4 Somatic Antigen of Heligmosomoides polygyrus vol.2018, pp.None, 2014, https://doi.org/10.1155/2018/8571920
  40. Antihyperglycemic and antihyperlipidemic effects of low-molecular-weight carrageenan in rats vol.13, pp.1, 2018, https://doi.org/10.1515/biol-2018-0046
  41. Chitin protects the gut epithelial barrier in a protochordate model of DSS-induced colitis vol.7, pp.1, 2018, https://doi.org/10.1242/bio.029355
  42. Distinct roles of intracellular heat shock protein 70 in maintaining gastrointestinal homeostasis vol.314, pp.2, 2014, https://doi.org/10.1152/ajpgi.00208.2017
  43. 고지방식이를 급여한 비만 마우스에서 luteolin이 화학적으로 유도한 대장암 발생에 미치는 영향 vol.51, pp.1, 2018, https://doi.org/10.4163/jnh.2018.51.1.14
  44. A murine colitis model developed using a combination of dextran sulfate sodium and Citrobacter rodentium vol.56, pp.4, 2014, https://doi.org/10.1007/s12275-018-7504-x
  45. Protective Effects of Honey and Spirulina Platensis on Acetic Acid-Induced Ulcerative Colitis in Rats vol.20, pp.4, 2018, https://doi.org/10.5812/ircmj.62517
  46. Potential usefulness of methyl gallate in the treatment of experimental colitis vol.26, pp.3, 2014, https://doi.org/10.1007/s10787-017-0412-6
  47. Treatment with Obestatin—A Ghrelin Gene-Encoded Peptide—Reduces the Severity of Experimental Colitis Evoked by Trinitrobenzene Sulfonic Acid vol.19, pp.6, 2018, https://doi.org/10.3390/ijms19061643
  48. Augmented reduction in colonic inflammatory markers of dextran sulfate sodium-induced colitis with a combination of 5-aminosalicylic acid and AD-lico™ from Glycyrrhiza inflata vol.22, pp.3, 2014, https://doi.org/10.1080/19768354.2018.1476409
  49. Expression of Mucins and Claudins in the Colon during Acute and Chronic Experimental Colitis vol.165, pp.4, 2014, https://doi.org/10.1007/s10517-018-4187-6
  50. Advances in understanding the role of cytokines in inflammatory bowel disease vol.12, pp.9, 2014, https://doi.org/10.1080/17474124.2018.1503053
  51. Tussilagone, a major active component in Tussilago farfara, ameliorates inflammatory responses in dextran sulphate sodium-induced murine colitis vol.294, pp.None, 2014, https://doi.org/10.1016/j.cbi.2018.08.022
  52. Dietary polysaccharide-rich extract from Eucheuma cottonii modulates the inflammatory response and suppresses colonic injury on dextran sulfate sodium-induced colitis in mice vol.13, pp.10, 2014, https://doi.org/10.1371/journal.pone.0205252
  53. Application of machine learning algorithms for multiparametric MRI-based evaluation of murine colitis vol.13, pp.10, 2014, https://doi.org/10.1371/journal.pone.0206576
  54. Running in the wheel: Defining individual severity levels in mice vol.16, pp.10, 2018, https://doi.org/10.1371/journal.pbio.2006159
  55. Rhamnogalacturonan, a chemically-defined polysaccharide, improves intestinal barrier function in DSS-induced colitis in mice and human Caco-2 cells vol.8, pp.None, 2014, https://doi.org/10.1038/s41598-018-30526-2
  56. Huangkui Lianchang Decoction Ameliorates DSS-Induced Ulcerative Colitis in Mice by Inhibiting the NF-kappaB Signaling Pathway vol.2019, pp.None, 2014, https://doi.org/10.1155/2019/1040847
  57. Single-Chain Variable Fragment Antibody of Vascular Cell Adhesion Molecule 1 as a Molecular Imaging Probe for Colitis Model Rabbit Investigation vol.2019, pp.None, 2014, https://doi.org/10.1155/2019/2783519
  58. Albumin nano-encapsulation of caffeic acid phenethyl ester and piceatannol potentiated its ability to modulate HIF and NF-kB pathways and improves therapeutic outcome in experimental colitis vol.9, pp.1, 2019, https://doi.org/10.1007/s13346-018-00597-9
  59. Neorogioltriol and Related Diterpenes from the Red Alga Laurencia Inhibit Inflammatory Bowel Disease in Mice by Suppressing M1 and Promoting M2-Like Macrophage Responses vol.17, pp.2, 2014, https://doi.org/10.3390/md17020097
  60. Escherichia coli Pathobionts Associated with Inflammatory Bowel Disease vol.32, pp.2, 2014, https://doi.org/10.1128/cmr.00060-18
  61. Supercritical Fluid Extract of Angelica sinensis and Zingiber officinale Roscoe Ameliorates TNBS-Induced Colitis in Rats vol.20, pp.15, 2014, https://doi.org/10.3390/ijms20153816
  62. Pharmacological inhibition of NPY receptors illustrates dissociable features of experimental colitis in the mouse DSS model: Implications for preclinical evaluation of efficacy in an inflammatory bowe vol.14, pp.8, 2014, https://doi.org/10.1371/journal.pone.0220156
  63. MMI-0100 Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice through Targeting MK2 Pathway vol.24, pp.15, 2014, https://doi.org/10.3390/molecules24152832
  64. Milk phospholipids ameliorate mouse colitis associated with colonic goblet cell depletion via the Notch pathway vol.10, pp.8, 2019, https://doi.org/10.1039/c9fo00690g
  65. Sacral nerve stimulation improves colonic inflammation mediated by autonomic‐inflammatory cytokine mechanism in rats vol.31, pp.10, 2019, https://doi.org/10.1111/nmo.13676
  66. Preclinical Study in Vivo for New Pharmacological Approaches in Inflammatory Bowel Disease: A Systematic Review of Chronic Model of TNBS-Induced Colitis vol.8, pp.10, 2014, https://doi.org/10.3390/jcm8101574
  67. Protective Effect of Spirulina platensis Extract against Dextran-Sulfate-Sodium-Induced Ulcerative Colitis in Rats vol.11, pp.10, 2019, https://doi.org/10.3390/nu11102309
  68. SDF-1/CXCR4 axis enhances the immunomodulation of human endometrial regenerative cells in alleviating experimental colitis vol.10, pp.1, 2014, https://doi.org/10.1186/s13287-019-1298-6
  69. Anti-Inflammatory, Antioxidant, and Microbiota-Modulating Effects of Camellia Oil from Camellia brevistyla on Acetic Acid-Induced Colitis in Rats vol.9, pp.1, 2014, https://doi.org/10.3390/antiox9010058
  70. Improvement of Oxazolone-Induced Ulcerative Colitis in Rats Using Andrographolide vol.25, pp.1, 2020, https://doi.org/10.3390/molecules25010076
  71. Inflammatory Bowel Diseases: It's Time for the Adenosine System vol.11, pp.None, 2014, https://doi.org/10.3389/fimmu.2020.01310
  72. Lycopene Alleviates DSS-Induced Colitis and Behavioral Disorders via Mediating Microbes-Gut-Brain Axis Balance vol.68, pp.13, 2014, https://doi.org/10.1021/acs.jafc.0c00196
  73. Lessons on the Sigma-1 Receptor in TNBS-Induced Rat Colitis: Modulation of the UCHL-1, IL-6 Pathway vol.21, pp.11, 2020, https://doi.org/10.3390/ijms21114046
  74. Aspects of free radical oxidation in the large bowel in ulcerative colitis and Crohn’s disease vol.2020, pp.3, 2020, https://doi.org/10.24075/brsmu.2020.027
  75. The natural flavonoid galangin ameliorates dextran sulphate sodium–induced ulcerative colitis in mice: Effect on Toll‐like receptor 4, inflammation and oxidative stress vol.127, pp.1, 2014, https://doi.org/10.1111/bcpt.13388
  76. Baicalin alleviates TNBS‑induced colitis by inhibiting PI3K/AKT pathway activation vol.20, pp.1, 2014, https://doi.org/10.3892/etm.2020.8718
  77. Non-Adherent Bone Marrow-Derived Mesenchymal Stem Cells Ameliorate Clinical Manifestations and Inflammation in an Experimental Model of Ulcerative Colitis in Rats vol.45, pp.5, 2014, https://doi.org/10.30476/ijms.2020.72514.0
  78. MicroRNAs Regulate Intestinal Immunity and Gut Microbiota for Gastrointestinal Health: A Comprehensive Review vol.11, pp.9, 2014, https://doi.org/10.3390/genes11091075
  79. Histological and ultrastructural changes of the colon in dextran sodium sulfate-induced mouse colitis vol.20, pp.3, 2014, https://doi.org/10.3892/etm.2020.8946
  80. Flaxseed oligosaccharides alleviate DSS-induced colitis through modulation of gut microbiota and repair of the intestinal barrier in mice vol.11, pp.9, 2020, https://doi.org/10.1039/d0fo01105c
  81. Weissella paramesenteroides WpK4 plays an immunobiotic role in gut-brain axis, reducing gut permeability, anxiety-like and depressive-like behaviors in murine models of colitis and chronic stress vol.137, pp.None, 2014, https://doi.org/10.1016/j.foodres.2020.109741
  82. Beneficial effect of Bidens pilosa L. (Asteraceae) in a rat model of colitis vol.31, pp.6, 2014, https://doi.org/10.1515/jbcpp-2019-0166
  83. Mycobacterial Hsp65 antigen delivered by invasive Lactococcus lactis reduces intestinal inflammation and fibrosis in TNBS-induced chronic colitis model vol.10, pp.1, 2014, https://doi.org/10.1038/s41598-020-77276-8
  84. Suppression of miR-330-3p alleviates DSS-induced ulcerative colitis and apoptosis by upregulating the endoplasmic reticulum stress components XBP1 vol.157, pp.1, 2014, https://doi.org/10.1186/s41065-020-00135-z
  85. A Novel Fusion of IL-10 Engineered to Traffic across Intestinal Epithelium to Treat Colitis vol.205, pp.11, 2014, https://doi.org/10.4049/jimmunol.2000848
  86. Efficacy of combined therapy with fish oil and phytocannabinoids in murine intestinal inflammation vol.35, pp.1, 2014, https://doi.org/10.1002/ptr.6831
  87. Reflections on the Use of an Invertebrate Chordate Model System for Studies of Gut Microbial Immune Interactions vol.12, pp.None, 2014, https://doi.org/10.3389/fimmu.2021.642687
  88. The Communication Between Intestinal Microbiota and Ulcerative Colitis: An Exploration of Pathogenesis, Animal Models, and Potential Therapeutic Strategies vol.8, pp.None, 2014, https://doi.org/10.3389/fmed.2021.766126
  89. Effect of Cynara cardunculus L. var. altilis (DC) in Inflammatory Bowel Disease vol.11, pp.4, 2014, https://doi.org/10.3390/app11041629
  90. Single Donor FMT Reverses Microbial/Immune Dysbiosis and Induces Clinical Remission in a Rat Model of Acute Colitis vol.10, pp.2, 2014, https://doi.org/10.3390/pathogens10020152
  91. Pectin in diet: Interactions with the human microbiome, role in gut homeostasis, and nutrient-drug interactions vol.255, pp.None, 2021, https://doi.org/10.1016/j.carbpol.2020.117388
  92. Copaifera malmei Harms leaves infusion attenuates TNBS-ulcerative colitis through modulation of cytokines, oxidative stress and mucus in experimental rats vol.267, pp.None, 2014, https://doi.org/10.1016/j.jep.2020.113499
  93. Animal models for inducing inflammatory bowel diseases: integrative review vol.11, pp.1, 2014, https://doi.org/10.21876/rcshci.v11i1.1056
  94. Hecogenin and fluticasone combination attenuates TNBS-induced ulcerative colitis in rats via downregulation of pro-inflammatory mediators and oxidative stress vol.43, pp.2, 2014, https://doi.org/10.1080/08923973.2021.1872617
  95. Oxyresveratrol Ameliorates Dextran Sulfate Sodium-Induced Colitis in Rats by Suppressing Inflammation vol.26, pp.9, 2014, https://doi.org/10.3390/molecules26092630
  96. Human Relevance of Preclinical Studies on the Skeletal Impact of Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis vol.108, pp.6, 2014, https://doi.org/10.1007/s00223-021-00808-5
  97. A New Rat Model of Pouchitis After Proctocolectomy and Ileal Pouch-Anal Anastomosis Using 2,4,6-Trinitrobenzene Sulfonic Acid vol.25, pp.6, 2014, https://doi.org/10.1007/s11605-020-04642-2
  98. Fish Sidestream-Derived Protein Hydrolysates Suppress DSS-Induced Colitis by Modulating Intestinal Inflammation in Mice vol.19, pp.6, 2014, https://doi.org/10.3390/md19060312
  99. Design, synthesis and molecular modeling studies of novel mesalamine linked coumarin for treatment of inflammatory bowel disease vol.41, pp.None, 2014, https://doi.org/10.1016/j.bmcl.2021.128029
  100. Animal models of visceral pain and the role of the microbiome vol.10, pp.None, 2014, https://doi.org/10.1016/j.ynpai.2021.100064
  101. Protective effect of sarsasapogenin in TNBS induced ulcerative colitis in rats associated with downregulation of pro-inflammatory mediators and oxidative stress vol.43, pp.5, 2014, https://doi.org/10.1080/08923973.2021.1955919
  102. Hydroxytyrosol alleviate intestinal inflammation, oxidative stress and apoptosis resulted in ulcerative colitis vol.142, pp.None, 2021, https://doi.org/10.1016/j.biopha.2021.112073
  103. St. John’s Wort alleviates dextran sodium sulfate‐induced colitis through pregnane X receptor‐dependent NFκB antagonism vol.35, pp.11, 2014, https://doi.org/10.1096/fj.202001098r
  104. Intraperitoneal supplementation of iron alleviates dextran sodium sulfate-induced colitis by enhancing intestinal barrier function vol.144, pp.None, 2014, https://doi.org/10.1016/j.biopha.2021.112253
  105. A novel role of pirfenidone in attenuation acetic acid induced ulcerative colitis by modulation of TGF-β1 / JNK1 pathway vol.101, pp.no.pb, 2021, https://doi.org/10.1016/j.intimp.2021.108289
  106. Anti-inflammatory and -apoptotic effects of a long-term herbal extract treatment on DSS-induced colitis in mice fed with high AGEs-fat diet vol.18, pp.1, 2014, https://doi.org/10.1186/s12986-021-00603-x
  107. Investigation of H2S Donor Treatment on Neutrophil Extracellular Traps in Experimental Colitis vol.22, pp.23, 2014, https://doi.org/10.3390/ijms222312729
  108. Pineapple Leaf Phenols Attenuate DSS-Induced Colitis in Mice and Inhibit Inflammatory Damage by Targeting the NF-κB Pathway vol.26, pp.24, 2014, https://doi.org/10.3390/molecules26247656
  109. miR-511 Deficiency Protects Mice from Experimental Colitis by Reducing TLR3 and TLR4 Responses via WD Repeat and FYVE-Domain-Containing Protein 1 vol.11, pp.1, 2014, https://doi.org/10.3390/cells11010058
  110. Improving Animal Model of Induced Colitis by Acetic Acid in Terms of Fibrosis and Inflammation Incidence in the Colon vol.35, pp.1, 2014, https://doi.org/10.1080/08941939.2020.1821844
  111. Can Rodent Model of Acetic Acid-Induced Colitis be Used to Study the Pathogenesis of Colitis-Associated Intestinal Fibrosis? vol.35, pp.1, 2022, https://doi.org/10.1080/08941939.2020.1821845