DOI QR코드

DOI QR Code

Scopoletin from Cirsium setidens Increases Melanin Synthesis via CREB Phosphorylation in B16F10 Cells

  • Ahn, Mi-Ja (Department of Pharmacognosy, Chung-Ang University College of Pharmacy) ;
  • Hur, Sun-Jung (Department of Pharmacognosy, Chung-Ang University College of Pharmacy) ;
  • Kim, Eun-Hyun (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Lee, Seung Hoon (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Shin, Jun Seob (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Kim, Myo-Kyoung (Thomas J. Long School of Pharmacy, University of the Pacific) ;
  • Uchizono, James A. (Thomas J. Long School of Pharmacy, University of the Pacific) ;
  • Whang, Wan-Kyunn (Department of Pharmacognosy, Chung-Ang University College of Pharmacy) ;
  • Kim, Dong-Seok (Department of Biochemistry, Chung-Ang University College of Medicine)
  • Received : 2014.01.22
  • Accepted : 2014.05.19
  • Published : 2014.08.30

Abstract

In this study, we isolated scopoletin from Cirsium setidens Nakai (Compositae) and tested its effects on melanogenesis. Scopoletin was not toxic to cells at concentrations less than $50{\mu}M$ and increased melanin synthesis in a dose-dependent manner. As melanin synthesis increased, scopoletin stimulated the total tyrosinase activity, the rate-limiting enzyme of melanogenesis. In a cell-free system, however, scopoletin did not increase tyrosinase activity, indicating that scopoletin is not a direct activator of tyrosinase. Furthermore, Western blot analysis showed that scopoletin stimulated the production of microphthalmia-associated transcription factor (MITF) and tyrosinase expression via cAMP response element-binding protein (CREB) phosphorylation in a dose-dependent manner. Based on these results, preclinical and clinical studies are needed to assess the use of scopoletin for the treatment of vitiligo.

Keywords

References

  1. Hearing VJ, Tsukamoto K. Enzymatic control of pigmentation in mammals. FASEB J. 1991;5:2902-2909. https://doi.org/10.1096/fasebj.5.14.1752358
  2. Cho YS, Lee KH, Park JW. Pyrithione-zinc Prevents UVBinduced Epidermal Hyperplasia by Inducing HIF-1alpha. Korean J Physiol Pharmacol. 2010;14:91-97. https://doi.org/10.4196/kjpp.2010.14.2.91
  3. Pichler R, Sfetsos K, Badics B, Gutenbrunner S, Aubock J. Vitiligo patients present lower plasma levels of alpha-melanotropin immunoreactivities. Neuropeptides. 2006;40:177-183. https://doi.org/10.1016/j.npep.2006.03.001
  4. Lee WB, Kwon HC, Cho OR, Lee KC, Choi SU, Baek NI, Lee KR. Phytochemical constituents of Cirsium setidens Nakai and their cytotoxicity against human cancer cell lines. Arch Pharm Res. 2002;25:628-635. https://doi.org/10.1007/BF02976934
  5. Tal B, Robeson DJ. The metabolism of sunflower phytoalexins ayapin and scopoletin: plant-fungus interactions. Plant Physiol. 1986;82:167-172. https://doi.org/10.1104/pp.82.1.167
  6. Gnonlonfin BG, Gbaguidi F, Gbenou JD, Sanni A, Brimer L. Changes in scopoletin concentration in cassava chips from four varieties during storage. J Sci Food Agric. 2011;91:2344-2347. https://doi.org/10.1002/jsfa.4465
  7. Rollinger JM, Hornick A, Langer T, Stuppner H, Prast H. Acetylcholinesterase inhibitory activity of scopolin and scopoletin discovered by virtual screening of natural products. J Med Chem. 2004;47:6248-6254. https://doi.org/10.1021/jm049655r
  8. Lee SH, Ding Y, Yan XT, Kim YH, Jang HD. Scopoletin and scopolin isolated from Artemisia iwayomogi suppress differentiation of osteoclastic macrophage RAW 264.7 cells by scavenging reactive oxygen species. J Nat Prod. 2013;76:615-620. https://doi.org/10.1021/np300824h
  9. Yao X, Ding Z, Xia Y, Wei Z, Luo Y, Feleder C, Dai Y. Inhibition of monosodium urate crystal-induced inflammation by scopoletin and underlying mechanisms. Int Immunopharmacol. 2012;14:454-462. https://doi.org/10.1016/j.intimp.2012.07.024
  10. Zhang WY, Lee JJ, Kim Y, Kim IS, Park JS, Myung CS. Amelioration of insulin resistance by scopoletin in high-glucoseinduced, insulin-resistant HepG2 cells. Horm Metab Res. 2010;42:930-935. https://doi.org/10.1055/s-0030-1265219
  11. Costin GE, Hearing VJ. Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 2007; 21:976-994. https://doi.org/10.1096/fj.06-6649rev
  12. Yasumoto K, Yokoyama K, Takahashi K, Tomita Y, Shibahara S. Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J Biol Chem. 1997;272:503-509. https://doi.org/10.1074/jbc.272.1.503
  13. Lee HE, Kim EH, Choi HR, Sohn UD, Yun HY, Baek KJ, Kwon NS, Park KC, Kim DS. Dipeptides Inhibit Melanin Synthesis in Mel-Ab Cells through Down-Regulation of Tyrosinase. Korean J Physiol Pharmacol. 2012;16:287-291. https://doi.org/10.4196/kjpp.2012.16.4.287
  14. Busca R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 2000;13: 60-69. https://doi.org/10.1034/j.1600-0749.2000.130203.x
  15. Wu Q, Zou L, Yang XW, Fu DX. Novel sesquiterpene and coumarin constituents from the whole herbs of Crossostephium chinense. J Asian Nat Prod Res. 2009;11:85-90. https://doi.org/10.1080/10286020802435703
  16. Smalley K, Eisen T. The involvement of p38 mitogen-activated protein kinase in the alpha-melanocyte stimulating hormone (alpha-MSH)-induced melanogenic and anti-proliferative effects in B16 murine melanoma cells. FEBS Lett. 2000;476:198-202. https://doi.org/10.1016/S0014-5793(00)01726-9
  17. Noh JM, Kwak SY, Kim DH, Lee YS. Kojic acid-tripeptide amide as a new tyrosinase inhibitor. Biopolymers. 2007;88:300-307. https://doi.org/10.1002/bip.20670
  18. Kim DS, Park SH, Kwon SB, Park ES, Huh CH, Youn SW, Park KC. Sphingosylphosphorylcholine-induced ERK activation inhibits melanin synthesis in human melanocytes. Pigment Cell Res. 2006;19:146-153. https://doi.org/10.1111/j.1600-0749.2005.00287.x
  19. Price ER, Horstmann MA, Wells AG, Weilbaecher KN, Takemoto CM, Landis MW, Fisher DE. alpha-Melanocytestimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome. J Biol Chem. 1998;273:33042-33047. https://doi.org/10.1074/jbc.273.49.33042
  20. Dou Y, Tong B, Wei Z, Li Y, Xia Y, Dai Y. Scopoletin suppresses IL-6 production from fibroblast-like synoviocytes of adjuvant arthritis rats induced by IL-1${\beta}$ stimulation. Int Immunopharmacol. 2013;17:1037-1043. https://doi.org/10.1016/j.intimp.2013.10.011
  21. Grimes PE, Hamzavi I, Lebwohl M, Ortonne JP, Lim HW. The efficacy of afamelanotide and narrowband UV-B phototherapy for repigmentation of vitiligo. JAMA Dermatol. 2013;149:68-73. https://doi.org/10.1001/2013.jamadermatol.386
  22. Fabrikant J, Touloei K, Brown SM. A review and update on melanocyte stimulating hormone therapy: afamelanotide. J Drugs Dermatol. 2013;12:775-779.

Cited by

  1. Triterpene glycosides with stimulatory activity on melanogenesis from the aerial parts of Weigela subsessilis vol.38, pp.8, 2015, https://doi.org/10.1007/s12272-014-0524-0
  2. 곤드레 추출물의 최종당화산물의 생성저해 및 라디칼소거 활성 vol.23, pp.2, 2014, https://doi.org/10.11002/kjfp.2016.23.2.283
  3. Antioxidant effects of Cirsium setidens extract on oxidative stress in human mesenchymal stem cells vol.14, pp.4, 2014, https://doi.org/10.3892/mmr.2016.5706
  4. 표면 반응 분석법에 의한 곤드레 블랜칭 최적 공정 확립 및 항산화 능에 미치는 영향 vol.33, pp.4, 2014, https://doi.org/10.12925/jkocs.2016.33.4.777
  5. 곤드레 (Cirsium setidens) 에탄올 추출물의 알코올성 지방간 손상 억제 효과 vol.49, pp.6, 2016, https://doi.org/10.4163/jnh.2016.49.6.420
  6. Scopoletin Stimulates Melanogenesis via cAMP/PKA Pathway and Partially p38 Activation vol.40, pp.12, 2014, https://doi.org/10.1248/bpb.b16-00690
  7. Pectolinarigenin, an aglycone of pectolinarin, has more potent inhibitory activities on melanogenesis than pectolinarin vol.493, pp.1, 2014, https://doi.org/10.1016/j.bbrc.2017.08.106
  8. Rho-Kinase II Inhibitory Potential of Eurycoma longifolia New Isolate for the Management of Erectile Dysfunction vol.2019, pp.None, 2014, https://doi.org/10.1155/2019/4341592
  9. Carvone Decreases Melanin Content by Inhibiting Melanoma Cell Proliferation via the Cyclic Adenosine Monophosphate (cAMP) Pathway vol.25, pp.21, 2014, https://doi.org/10.3390/molecules25215191
  10. Plant-Derived Compounds as Promising Therapeutics for Vitiligo vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.685116
  11. Pectolinarin 고함유 곤드레 미세분말의 항산화 및 항비만 활성 vol.34, pp.1, 2014, https://doi.org/10.9799/ksfan.2021.34.1.069
  12. Secondary metabolites from Diaporthe lithocarpus isolated from Artocarpus heterophyllus vol.35, pp.14, 2014, https://doi.org/10.1080/14786419.2019.1672685
  13. Design, synthesis and structure-activity relationship optimization of phenanthridine derivatives as new anti-vitiligo compounds vol.119, pp.None, 2014, https://doi.org/10.1016/j.bioorg.2021.105582