DOI QR코드

DOI QR Code

Effect of ambient condition for coaxial dielectric barrier discharge reactor on $CO_2$ reforming of $CH_4$ to syngas

  • Nguyen, Duc Ba (Department of Chemical Engineering, Kangwon National University) ;
  • Lee, Won Gyu (Department of Chemical Engineering, Kangwon National University)
  • Received : 2013.03.26
  • Accepted : 2013.06.21
  • Published : 2014.05.25

Abstract

A coaxial dielectric barrier discharge reactor was used for the $CO_2$ reforming of $CH_4$ to syngas. The reactor was operated under two ambient conditions for comparison, namely, immersion in electrical insulating oil and total exposure in an air ambient. Immersion of the reactor in insulating oil increased the electrical power efficiency into the generation of plasma discharge due to the prevention of micro-arcing on the reactor surface. Operation in the insulating oil bath showed higher conversion and selectivity of major reactants and products rate than operation in an air ambient.

Keywords

References

  1. M.C.J. Bradford, M.A. Vannice, Catalysis Reviews 41 (1999) 1. https://doi.org/10.1081/CR-100101948
  2. J.R. Rostrup-Nielsen, Catalysis Today 63 (2000) 159. https://doi.org/10.1016/S0920-5861(00)00455-7
  3. L.M. Zhou, B. Xue, U. Kogelschatz, B. Eliasson, Energy Fuels 12 (1998) 1191. https://doi.org/10.1021/ef980044h
  4. X. Tao, M. Bai, X. Li, H. Long, S. Shang, Y. Yin, X. Dai, Progress in Energy and Combustion Science 37 (2011) 113. https://doi.org/10.1016/j.pecs.2010.05.001
  5. Q. Wang, Y. Cheng, Y. Jin, Catalysis Today 148 (2009) 275. https://doi.org/10.1016/j.cattod.2009.08.008
  6. X. Tu, H.J. Gallon, M.V. Twigg, P.A. Gorry, J.C. Whitehead, Journal of Physics D: Applied Physics 44 (2011) 274007. https://doi.org/10.1088/0022-3727/44/27/274007
  7. R. Martinez, E. Romero, C. Guimon, R. Bilbao, Applied Catalysis A: General 274 (2004) 139. https://doi.org/10.1016/j.apcata.2004.06.017
  8. F. Pompeo, N. Nichio, O. Ferretti, D. Resasco, International Journal of Hydrogen Energy 30 (2005) 1399. https://doi.org/10.1016/j.ijhydene.2004.10.004
  9. A.E. Castro Luna, M.E. Iriarte, Applied Catalysis A: General 343 (2008) 10. https://doi.org/10.1016/j.apcata.2007.11.041
  10. D. Liu, R. Lau, A. Borgna, Y. Yang, Applied Catalysis A: General 358 (2009) 110. https://doi.org/10.1016/j.apcata.2008.12.044
  11. R. Shang, X. Guo, S. Mu, Y. Wang, G. Jin, H. Kosslick, A. Schulz, X.-Y. Guo, International Journal of Hydrogen Energy 36 (2011) 4900. https://doi.org/10.1016/j.ijhydene.2011.01.034
  12. X. Tao, International Journal of Hydrogen Energy 33 (2008) 1262. https://doi.org/10.1016/j.ijhydene.2007.12.057
  13. X. Tao, M. Bai, Q. Wu, Z. Huang, Y. Yin, X. Dai, International Journal of Hydrogen Energy 34 (2009) 9373. https://doi.org/10.1016/j.ijhydene.2009.09.048
  14. H. Le, L.L. Lobban, R.G. Mallinson, Catalysis Today 89 (2004) 15. https://doi.org/10.1016/j.cattod.2003.11.038
  15. D. Li, X. Li, M. Bai, X. Tao, S. Shang, X. Dai, Y. Yin, International Journal of Hydrogen Energy 34 (2009) 308.
  16. A. Indarto, J. Choi, H. Lee, H. Song, Energy 31 (2006) 2986. https://doi.org/10.1016/j.energy.2005.10.034
  17. Y. Li, G.H. Xu, C.J. Liu, B. Eliasson, B.Z. Xue, Energy Fuels 15 (2001) 299. https://doi.org/10.1021/ef0002445
  18. S. Yao, A. Nakayama, E. Suzuki, AIChE Journal 47 (2001) 419. https://doi.org/10.1002/aic.690470218
  19. S. Yao, A. Nakayama, E. Suzuki, AIChE Journal 47 (2001) 413. https://doi.org/10.1002/aic.690470217
  20. H. Song, H. Lee, J.W. Choi, B.K. Na, Plasma Chemistry and Plasma Processing 24 (2004) 57. https://doi.org/10.1023/B:PCPP.0000004882.33117.42
  21. T.K. Kim, W.G. Lee, Journal of Industrial and Engineering Chemistry 18 (2012) 1710. https://doi.org/10.1016/j.jiec.2012.03.009
  22. S.K. Kundu, E.M. Kennedy, V.V. Gaikwad, T.S. Molloy, B.Z. Dlugogorski, Chemical Engineering Journal 180 (2012) 178. https://doi.org/10.1016/j.cej.2011.11.039
  23. X. Tu, J.C. Whitehead, Applied Catalysis B: Environmental 125 (2012) 439. https://doi.org/10.1016/j.apcatb.2012.06.006
  24. T. Shao, C. Zhang, K. Long, D. Zhang, J. Wang, P. Yan, Y. Zhou, Applied Surface Science 256 (2010) 3888. https://doi.org/10.1016/j.apsusc.2010.01.045
  25. X. Chen, M. Marquez, J. Rozak, C. Marun, J. Luo, S.L. Suib, Y. Hayashi, H. Matsumoto, Journal of Catalysis 178 (1998) 372. https://doi.org/10.1006/jcat.1998.2120
  26. S.L. Brock, T. Shimojo, S.L. Suib, Y. Hayashi, H. Matsumoto, Research on Chemical Intermediates 28 (2002) 13. https://doi.org/10.1163/156856702760129465
  27. B. Sarmiento, J.J. Brey, I.G. Viera, A.R. Gonzalez-Elipe, J. Cotrino, V.J. Rico, Journal of Power Sources 169 (2007) 140. https://doi.org/10.1016/j.jpowsour.2007.01.059
  28. V.J. Rico, J.L. Hueso, J. Cotrino, A.R. Gonzalez-Elipe, Journal of Physical Chemistry A 114 (2010) 4009. https://doi.org/10.1021/jp100346q
  29. T. Hammer, T. Kappes, M. Baldauf, Catalysis Today 89 (2004) 5. https://doi.org/10.1016/j.cattod.2003.11.001
  30. Air properties, http://www.engineeringtoolbox.com/air-properties-d_156. html.
  31. Thermal conductivity common liquids, http://www.engineeringtoolbox.com/thermal-conductivity-liquids-d_1260.html.
  32. Q. Wang, B.H. Yan, Y. Jin, Y. Cheng, Plasma Chemistry and Plasma Processing 29 (2009) 217. https://doi.org/10.1007/s11090-009-9173-3
  33. A. Huang, G. Xia, J. Wang, S.L. Suib, Y. Hayashi, H. Matsumoto, Journal of Catalysis 189 (2000) 349. https://doi.org/10.1006/jcat.1999.2684

Cited by

  1. 상압 플라즈마-촉매 하이브리드 반응기를 통한 CO2와 CH4의 전환처리 vol.25, pp.5, 2014, https://doi.org/10.14478/ace.2014.1071
  2. Effects of ambient gas on cold atmospheric plasma discharge in the decomposition of trifluoromethane vol.6, pp.32, 2016, https://doi.org/10.1039/c6ra01485b
  3. Investigation on the influence of electrode geometry on characteristics of coaxial dielectric barrier discharge reactor driven by an oscillating microsecond pulsed power supply vol.72, pp.3, 2014, https://doi.org/10.1140/epjd/e2018-80575-3
  4. Analysis of an Ar plasma jet in a dielectric barrier discharge conjugated with a microsecond pulse vol.21, pp.9, 2014, https://doi.org/10.1088/2058-6272/ab1d45
  5. Evaluation of plasma-derived heat and synergistic effect for in-plasma catalytic steam reforming of methanol vol.53, pp.10, 2014, https://doi.org/10.1088/1361-6463/ab5c37
  6. Effective removal of toluene at near room temperature using cyclic adsorption-oxidation operation in alternative fixed-bed plasma-catalytic reactor vol.164, pp.None, 2014, https://doi.org/10.1016/j.cherd.2020.10.006
  7. High-Throughput NOx Removal by Two-Stage Plasma Honeycomb Monolith Catalyst vol.55, pp.9, 2014, https://doi.org/10.1021/acs.est.1c00750
  8. 1D Model of the Dielectric Barrier Discharge in Ar-S2 Mixtures vol.41, pp.4, 2014, https://doi.org/10.1007/s11090-021-10175-6