DOI QR코드

DOI QR Code

Polymer material-supported titania nanofibers with different polyvinylpyrrolidone to $TiO_2$ ratios for degradation of vaporous trichloroethylene

  • Chun, Ho-Hwan (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Jo, Wan-Kuen (Department of Environmental Engineering, Kyungpook National University)
  • Received : 2013.02.19
  • Accepted : 2013.06.15
  • Published : 2014.05.25

Abstract

Polymer-supported $TiO_2$ nanofibers with different polyvinylpyrrolidone (PVP)-to-$TiO_2$ (PT) ratios were synthesized and their photocatalytic efficiencies were examined for the decomposition of trichloroethylene (TCE). The spectral results of the $TiO_2$ nanofibers confirmed the presence of $TiO_2$ crystal phases in the nanofibers. The $TiO_2$ nanofiber with the highest PT ratio of 1:1.3 showed the highest TCE decomposition (94%), followed by $TiO_2$ nanofibers with PT ratios of 1:0.7 (91%), 1:0.35 (88%), and 1:0.1 (84%). The conditions of low input concentration and humidity were suggested for the optimal decomposition of TCE. Consequently, the $TiO_2$ nanofiber webs could be used effectively to decompose TCE.

Keywords

References

  1. W.-K. Jo, K.-H. Park, Chemosphere 57 (2004) 555-565. https://doi.org/10.1016/j.chemosphere.2004.08.018
  2. M. Sleiman, P. Conchon, C. Ferronato, J.-M. Chovelon, Applied Catalysis B 86 (2009) 159-165. https://doi.org/10.1016/j.apcatb.2008.08.003
  3. Y. Paz, Applied Catalysis B 99 (2010) 448-460. https://doi.org/10.1016/j.apcatb.2010.05.011
  4. P. Pichat, Applied Catalysis B 99 (2010) 428-434. https://doi.org/10.1016/j.apcatb.2010.07.022
  5. K. Nakata, A. Fujishima, Journal of Photochemistry and Photobiology C 13 (2012) 169-189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001
  6. C.H. Ao, S.C. Lee, Chemical Engineering Science 60 (2005) 103-109. https://doi.org/10.1016/j.ces.2004.01.073
  7. D. Mo, D. Ye, Surface and Coatings Technology 203 (2009) 1154-1160. https://doi.org/10.1016/j.surfcoat.2008.10.007
  8. S.W. Verbruggen, S. Ribben, T. Tytgat, B. Hauchecorne, M. Smits, V. Meynen, P. Cool, J.A. Martens, S. Lenaerts, Chemical Engineering Journal 174 (2011) 318-325. https://doi.org/10.1016/j.cej.2011.09.038
  9. W.K. Jo, J.T. Kim, Journal of Chemical Technology and Biotechnology 85 (2010) 485-492.
  10. J.S. Im, M.I. Kim, Y.-S. Lee, Materials Letters 62 (2008) 3652-3655. https://doi.org/10.1016/j.matlet.2008.04.019
  11. A.K. Alves, F.A. Berutti, F.J. Clemens, T. Graule, C.P. Bergmann, Materials Research Bulletin 44 (2009) 312-317. https://doi.org/10.1016/j.materresbull.2008.06.001
  12. X. Zhang, S. Xu, G. Han, Materials Letters 63 (2009) 1761-1763. https://doi.org/10.1016/j.matlet.2009.05.038
  13. B. Ding, C.K. Kim, H.Y. Kim, M.K. Seo, S.J. Park, Fibers and Polymers 5 (2004) 105-109. https://doi.org/10.1007/BF02902922
  14. S. Kim, S.K. Lim, Applied Catalysis B 84 (2008) 16-20. https://doi.org/10.1016/j.apcatb.2008.02.025
  15. A. Fujishima, X. Zhang, S.A. Tryk, Surface Science Reports 63 (2008) 515-582. https://doi.org/10.1016/j.surfrep.2008.10.001
  16. C. Jia, S. Batterman, C. Godwin, Atmospheric Environment 42 (2008) 2101-2116. https://doi.org/10.1016/j.atmosenv.2007.11.047
  17. US EPA, Integrated Risk Information System. http://www.cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceLis (accessed 24.02.10).
  18. T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, Applied Catalysis A 265 (2004) 115-121. https://doi.org/10.1016/j.apcata.2004.01.007
  19. S. Liu, X. Chen, Journal of Hazardous Materials 152 (2008) 48-55. https://doi.org/10.1016/j.jhazmat.2007.06.062
  20. F. Wei, L. Ni, P. Cui, Journal of Hazardous Materials 156 (2008) 135-140. https://doi.org/10.1016/j.jhazmat.2007.12.018
  21. Q.L. Yu, H.J.H. Brouwers, Applied Catalysis B 92 (2009) 454-461. https://doi.org/10.1016/j.apcatb.2009.09.004
  22. T. Martinez, A. Bertron, E. Ringot, G. Escadeillas, Building and Environment 46 (2011) 1808-1816. https://doi.org/10.1016/j.buildenv.2011.03.001
  23. A. Bouzaza, C. Vallet, A. Laplanche, Journal of Photochemistry and Photobiology A 177 (2006) 212-217. https://doi.org/10.1016/j.jphotochem.2005.05.027
  24. C. Akly, P.A. Chadik, D.W. Mazyck, Applied Catalysis B 99 (2010) 329-335. https://doi.org/10.1016/j.apcatb.2010.07.002
  25. K. Demeestere, J. Dewulf, H. Van Langenhove, Critical Reviews in Environmental Science and Technology 37 (2007) 489-538. https://doi.org/10.1080/10643380600966467
  26. C.H. Ao, S.C. Lee, C.L. Mak, L.Y. Chan, Applied Catalysis B 42 (2003) 119-129. https://doi.org/10.1016/S0926-3373(02)00219-9

Cited by

  1. In Situ Synthesis of Ti3+ Self-Doped TiO2/N-Doped Carbon Nanocomposites and its Visible Light Photocatalytic Performance vol.11, pp.8, 2014, https://doi.org/10.1142/s1793292016500880
  2. A type of novel glass for indoor air cleaning under visible-light vol.137, pp.None, 2014, https://doi.org/10.1016/j.buildenv.2018.04.013
  3. Highly Efficient Recovery of Water-Soluble Polymers in Synergistic Kinetic Inhibition of Gas Hydrate Formation vol.1, pp.2, 2019, https://doi.org/10.1021/acsapm.8b00177
  4. A Label‐free Electrochemiluminescence Sensing for Detection of Dopamine Based on TiO2 Electrospun Nanofibers vol.34, pp.1, 2014, https://doi.org/10.1002/elan.202100502