DOI QR코드

DOI QR Code

Geological modeling and simulations of $CO_2$ plume behavior in a saline formation, CO2CRC Otway Project, Australia

호주 오트웨이 프로젝트 $CO_2$ 주입 대상 염수층의 지질 모델링 및 $CO_2$ 거동 시뮬레이션

  • Received : 2014.04.05
  • Accepted : 2014.06.24
  • Published : 2014.06.30

Abstract

This study focuses on the prediction of facies distribution and on the simulation of $CO_2$ plume behavior in saline sandstones of deltaic origin, Paaratte Formation, Otway Basin where CO2CRC Otway Project considers $CO_2$ injection. Five facies are identified for the Paaratte Formation, based on well log and core data. Facies are populated in a 3-dimensional grid by using stochastic method with consideration of lateral continuity, vertical range and orientation for each facies. Well log and core analysis show that porosity is different for each facies and is closely related to permeability. Considering this relationship, porosity is modeled stochastically for each facies and then the porosity model is used to guide the distribution of permeability. The benefit of constraining the porosity model to the facies model is to obtain geological heterogeneity with high porosities distributed within sand-dominated facies, and low porosities within mud-dominated facies. The simulation study has been performed to evaluate the behavior of $CO_2$ plumes for two end-member reservoirs: heterogeneous with five facies and homogeneous with reservoir and non-reservoir facies. The simulation results imply that different reservoirs can have a different impact on the $CO_2$ behavior such as saturation, flow direction, and shape of discrete $CO_2$ plumes.

본 연구는 호주 오트웨이 프로젝트의 이산화탄소 주입 대상 지층인 Paaratte 층의 삼각주 사암 염수층 내 퇴적상의 분포 예측과 이산화탄소 거동 예측 시뮬레이션에 중점을 두고 있다. 물리검층 및 시추코어 자료를 이용하여 Paaratte 층에서 다섯 개의 퇴적상을 구분하였다. 주입 대상 지층의 3차원 격자에서 퇴적상 분포를 예측하기 위해 각 퇴적상의 횡적 연장성, 수직 상관성, 방향성을 분석하여 입력자료로 활용하였고, 추계론적 방법을 이용하여 퇴적상 모델링을 수행하였다. 코어 분석과 물리검층 분석 결과는 공극률이 각 퇴적상에 따라 분포 범위가 상이하고, 투과도와 높은 상관관계가 있음을 보여준다. 이러한 분석 결과를 고려하여, 각 퇴적상별로 공극률 분포를 추계론적 방법으로 예측하였고, 공극률 모델을 이용하여 투과도의 분포를 예측하였다. 퇴적상 분포를 반영한 공극률 모델링 결과는 사암이 우세한 퇴적상 분포 영역에서 공극률이 높고, 이암이 우세한 영역에서 공극률이 낮은 특성을 반영함으로써 대상 지층의 비균질성을 잘 표현하는 것으로 여겨진다. 다섯 개의 퇴적상으로 구성된 비균질한 염수층과 저류암-비저류암으로 구성된 균질한 염수층을 대상으로 각각 이산화탄소 거동시뮬레이션을 수행하였다. 시뮬레이션 결과는 퇴적상의 비균질한 분포 특성이 불연속적으로 확산되는 플룸의 형태, 이산화탄소 유동 방향, 이산화탄소 포화도 등에 영향을 줄 수 있는 요인임을 보여준다.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원

References

  1. Anderson, M.P. and Woessner, W.W., 1992, Applied groundwater modeling: simulation of flow and advective transport. Academic Press, San Diego, 381 p.
  2. Brooks, R.H. and Corey, A.T., 1964, Hydraulic properties of porous media. Colorado State University Hydrology Paper No. 3, 27 p.
  3. Bunch, M.A., 2013, Gauging geological characterisation for $CO_2$ storage: the Australasian experience so far.... Australian Journal of Earth Sciences, 60(1), 5-21. https://doi.org/10.1080/08120099.2012.737371
  4. Bunch, M.A., Lawrence, M., Dance, T., Daniel, R.F., Menacherry, S., Browne, G. and Arnot, M., 2012, Multi-scale characterisation of the Paaratte Formation, Otway Basin, for $CO_2$ injection and storage. AAPG International Conference and Exhibition (abstracts), Singapore, September 16-19, 1 p.
  5. Coleman, J.M. and Prior, D.B., 1982, Deltaic environments of deposition. In: Scholle, P.A. and Spearing, D. (eds.), Sandstone depositional environments. AAPG Memoir, 31, 139-178.
  6. Daniel, R., Menacherry, S. and Bunch, M., 2011, Characterisation of dolomitic intraformational barriers, CRC-2b injection zone, Paaratte Formation, CO2CRC Otway Project. CO2CRC Research Symposium 2011 (Abstracts), Adelaide, Australia, 29 November -1 December, 78 p.
  7. Doughty, C., 2010, Investigation of $CO_2$ plume behavior for a large-scale pilot test of geologic carbon storage in a saline formation. Transport in Porous Media, 82(1), 49-76. https://doi.org/10.1007/s11242-009-9396-z
  8. Dutton, S.P., White, C.D., Willis, B.J. and Novakovic, D., 2002, Calcite cement distribution and its effect on fluid flow in a deltaic sandstone, Frontier Formation, Wyoming. American Association of Petroleum Geologists Bulletin, 86(12), 2007-2021.
  9. Finlayson, D.M., Johnstone, D.W., Owen, A.J. and Dyster, K.D., 1996, Deep seismic images and the tectonic framework of early rifting in the Otway Basin, Australian southern margin. Tectonophysics, 264, 137-152. https://doi.org/10.1016/S0040-1951(96)00123-0
  10. Flett, M., Gurton, R. and Weir, G., 2007, Heterogeneous saline formations for carbon dioxide disposal: Impact of varying heterogeneity on containment and trapping. Journal of Petroleum Science and Engineering, 57(1), 106-118. https://doi.org/10.1016/j.petrol.2006.08.016
  11. Gallagher, S.J., Taylor, D., Apthorpe, M., Stilwell, J.D., Boreham, C.J., Holdgate, G.R., Wallace, M.W. and Quilty, P.G., 2005, Late Cretaceous dysoxia in a southern high latitude siliclastic succession, the Otway Basin, southeastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 317-348. https://doi.org/10.1016/j.palaeo.2005.04.017
  12. Gani, M.R. and Bhattacharya, J.P., 2007, Basic building blocks and process variability of a Cretaceous delta: internal facies architecture reveals a more dynamic interaction of river, wave, and tidal processes than is indicated by external shape. Journal of Sedimentary Research, 77(4), 284-302. https://doi.org/10.2110/jsr.2007.023
  13. Geary, G.C. and Reid, I.S.A., 1998, Hydrocarbon prospectivity of the offshore eastern Otway Basin, Victoria - for the 1998 Acreage Release. Victorian Initiative for Minerals and Petroleum Report 55, Department of Natural Resources and Environment, 110 p.
  14. Hill, K.A., Cooper, G.T., Richardson, M.J. and Lavin, C.J., 1994, Structural framework of the Eastern Otway Basin: Inversion and interaction between two major structural provinces. Exploration Geophysics, 25, 79-87. https://doi.org/10.1071/EG994079
  15. Jenkins, C., Sharma, S. and Morvell, G., 2008, Assessing a saline aquifer for $CO_2$ storage: the CO2CRC Otway Project Stage 2. Cooperative Research Centre for Greenhouse Gas Technologies, Canberra, Australia, CO2CRC Publication Number RPT08-1147, 29 p.
  16. Lawrence, M., Arnot, M., Browne, G., Bunch, M., Menacherry, S. and Dance, T., 2011, Sedimentological Interpretation of Core from Otway Project Well CRC-2. CO2CRC Research Symposium 2011 (Abstracts), Adelaide, Australia, 29 November - 1 December, 82 p.
  17. Lee, K., Gani, M.R., McMechan, G.A., Bhattacharya, J.P., Nyman, S.L. and Zeng, X., 2007, Three-dimensional facies architecture and three-dimensional calcite concretion distributions in a tide-influenced delta front, Wall Creek Member, Frontier Formation, Wyoming. American Association of Petroleum Geologists Bulletin, 91(2), 191-214. https://doi.org/10.1306/08310605114
  18. Lengler, U., De Lucia, M. and Kühn, M., 2010, The impact of heterogeneity on the distribution of $CO_2$: Numerical simulation of $CO_2$ storage at Ketzin. International Journal of Greenhouse Gas Control, 4(6), 1016-1025. https://doi.org/10.1016/j.ijggc.2010.07.004
  19. Michael, K., Golab, A., Shulakova, V., Ennis-King, J., Allinson, G., Sharma, S. and Aiken, T., 2010, Geological storage of $CO_2$ in saline aquifers-A review of the experience from existing storage operations. International Journal of Greenhouse Gas Control, 4(4), 659-667. https://doi.org/10.1016/j.ijggc.2009.12.011
  20. Middleton, M.F. and Falvey, D.A., 1983, Maturation modeling in Otway Basin, Australia. American Association of Petroleum Geologists Bulletin, 67(2), 271-279.
  21. Park, C.H., Shinn, Y.J., Park, Y.C., Huh, D.G. and Lee, S.K., 2014, PET2OGS: Algorithms to link the static model of Petrel with the dynamic model of OpenGeoSys. Computers & Geosciences, 62, 95-102. https://doi.org/10.1016/j.cageo.2013.09.014
  22. Pevzner, R., Urosevic, M., Caspari, E., Galvin, R.J., Madadi, M., Dance, T., Shulakova, V., Gurevich, B., Tcheverda, V. and Cinar, Y., 2013, Feasibility of time-lapse seismic methodology for monitoring the injection of small quantities of $CO_2$ into a saline formation, CO2CRC Otway Project. Energy Procedia, 37, 4336-4343. https://doi.org/10.1016/j.egypro.2013.06.336
  23. Tye, R.S., 2004, Geomorphology: An approach to determining subsurface reservoir dimensions. American Association of Petroleum Geologists Bulletin, 88(8), 1123-1147. https://doi.org/10.1306/02090403100

Cited by

  1. Time-lapse Seismic Monitoring Technique for the Otway Site vol.57, pp.1, 2014, https://doi.org/10.32390/ksmer.2020.57.1.035