DOI QR코드

DOI QR Code

The effects of the carbon dioxide stored in geological formations on the mineralogical and geochemical alterations of phyllosilicate minerals

지중저장 이산화탄소가 층상규산염광물의 광물학적 및 지화학적 변화에 미치는 영향 연구

  • Park, Eundoo (Department of Energy Resources Engineering, Pukyong National University) ;
  • Wang, Sookyun (Department of Energy Resources Engineering, Pukyong National University) ;
  • Kim, Sunok (Department of Energy Resources Engineering, Pukyong National University) ;
  • Lee, Minhee (Department of Earth Environmental Sciences, Pukyong National University)
  • 박은두 (부경대학교 에너지자원공학과) ;
  • 왕수균 (부경대학교 에너지자원공학과) ;
  • 김선옥 (부경대학교 에너지자원공학과) ;
  • 이민희 (부경대학교 지구환경과학과)
  • Received : 2013.12.19
  • Accepted : 2014.03.12
  • Published : 2014.04.30

Abstract

This study aims to identify the geochemical and mineralogical effects of carbon dioxide stored in geological formations on the subsurface environments. A series of autoclave experiments were conducted to simulate the interactions in the $CO_2$-groundwater-phyllosilicate reaction systems using a high pressure and temperature cell at $50^{\circ}C$ and 100 bar. Kaolinite and montmorillonite were used as geological materials reactive in $CO_2$-rich acidic environments, and groundwater samples from a 800 m-depth well were applied as aqueous solutions. The characteristics of dissolution of phyllosilicate minerals and their geochemical and mineralogical alterations after 30-days of reaction were quantitatively examined with XRD, XRF, ICP-OES and SEM/EDX. Throughout the experiments, the dissolution of $CO_2$ resulted in lowering the pH, increasing cation concentrations in the aqueous phase, and, thereby, the changes in composition and interlayer spacing in the mineral phase. The experimental results clearly showed the enhanced dissolution of kaolinite and montmorillonite with the presence of $CO_2$. They also suggested that geochemical processes such as dissolution/precipitation and cation exchange played major roles in physical and chemical changes in pore structure and groundwater in relevant formations and aquifers.

이 연구는 지중저장된 이산화탄소가 심부 지하 환경에 미치는 지질학적 및 광물학적 영향을 규명하기 위하여 수행되었다. 이를 위하여 이산화탄소 지중저장 조건에 해당하는 $50^{\circ}C$와 100 bar의 고온 고압조건을 고압셀내에서 구현하고, 초임계 $CO_2$-지하수-층상규산염광물 시스템 내에서의 반응 실험을 실시하였다. 반응실험에는 층상규산염 광물인 카올리나이트와 몬모릴로나이트 시료를 $CO_2$가 유입되어 조성된 산성 환경에서의 반응광물로 선택하고, 지하 800 m에서 채취된 온천수를 지하수 시료로 사용하였다. 30일간의 반응실험을 통하여 광물 시료의 용해 특성과 반응 전후의 지화학적 및 광물학적 변화를 XRD, XRF, ICP-OES, SEM/EDX 등의 분석을 통해 정량적으로 규명하고자 하였다. 실험을 통하여 이산화탄소의 용해로 조성된 산성 환경에서 야기된 점토광물의 용해가 지하수 내 pH와 양이온 농도의 변화에 영향을 미치고, 광물 시료의 조성뿐만 아니라 층간 간격 등 광물상의 변화를 유도하는 일련의 과정이 관측되었다. 실험의 결과는 이산화탄소의 존재가 카올리나이트와 몬모릴로나이트 시료로 대표된 층상규산염광물의 용해를 촉진할 수 있음을 뚜렷하게 보여주었다. 또한 광물상의 용해/침전과 양이온 교환 등 지화학적 반응들이 지중저장 관련 지층의 암석과 지하수의 물리화학적 변화에 중요한 영향을 미칠 수 있다는 점을 입증하였다.

Keywords

Acknowledgement

Supported by : 미래창조과학부

References

  1. Akimoto, K., Kotsubo, H., Asami, T., Li, X., Uno, M., Tomoda, T. and Ohsumi, T., 2004, Evaluation of carbon dioxide sequestration in Japan with a mathematical model. Energy, 29, 1537-1549. https://doi.org/10.1016/j.energy.2004.03.058
  2. Bachu, S., 2000, Sequestration of $CO_2$ in geological media: criteria and approach for site selection in response of climate change. Energy Conversion and Management, 41, 953-970. https://doi.org/10.1016/S0196-8904(99)00149-1
  3. Bachu, S., Gunter, W.D. and Perkins, E.H., 1994, Aquifer disposal of $CO_2$: hydrodynamic and mineral trapping. Energy Conversion and Management, 35, 269-279. https://doi.org/10.1016/0196-8904(94)90060-4
  4. Duan, Z. and Sun, R., 2003, An improved model calculating $CO_2$ solubility in pure water and aqueous NaCl solutions from 257 to 533 K and from 0 to 2000 bar. Chemical Geology, 193, 257-271. https://doi.org/10.1016/S0009-2541(02)00263-2
  5. Emberley, S., Hutcheon, I., Shevalier, M., Durocher, K., Gunter, W.D. and Perkins, E.H., 2004, Geochemical monitoring of fluid-rock interaction at $CO_2$ storage at the Weyburn $CO_2$-injection enhanced oil recovery site, Saskatchewan, Canada. Energy, 29, 1393-1401. https://doi.org/10.1016/j.energy.2004.03.073
  6. Garcia, B., Beaumont, V., Perfetti, E., Rouchon, V., Blanchet, D., Oger, P., Dromart, G., Huc, A.Y. and Haeseler, F., 2010, Experiments and geochemical modelling of $CO_2$ sequestration by olivine: Potential, quantification. Applied Geochemistry, 25, 1383-1396. https://doi.org/10.1016/j.apgeochem.2010.06.009
  7. Giesting, P., Guggenheim, S., Koster van Groos, A.F. and Busch, A., 2012, X-ray diffraction study of K- and Ca-exchanged montmorillonites in $CO_2$ atmospheres. Environmental Science & Technology, 46, 5623-5630. https://doi.org/10.1021/es3005865
  8. Hangx, S.J.T. and Spiers, C.J., 2009, Reaction of plagioclase feldspars with $CO_2$ under hydrothermal conditions. Chemical Geology, 265, 88-98. https://doi.org/10.1016/j.chemgeo.2008.12.005
  9. Hitchon, B., 1996, Aquifer Disposal of Carbon Dioxide: Hydrodynamic and Mineral Trapping - Proof of Concept. Geoscience Publishing Limited, Sherwood Park, 165 p.
  10. Huertas, F.J., Chou, L. and Wollast, R., 1999, Mechanism of kaolinite dissolution at room temperature and pressure Part II: Kinetic study. Geochimica et Cosmochimica Acta, 63, 3261-3275. https://doi.org/10.1016/S0016-7037(99)00249-5
  11. IPCC, 2005, IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H.C. de Coninck, M. Loos, and L.A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and NewYork, NY, USA, 442 p.
  12. Khawmee, K., Suddhiprakarn, A., Kheoruenromne, I., Bibi, I. and Singh, B., 2013, Dissolution behaviour of soil kaolinites in acidic solutions. Clay Minerals, 48, 447-461. https://doi.org/10.1180/claymin.2013.048.3.02
  13. Kihm, J., Kim, J, Wang, S. and Xu, T., 2012, Hydrogeochemical numerical simulation of impacts of mineralogical compositions and convective fluid flow on trapping mechanisms and efficiency of carbon dioxide injected into deep saline sandstone aquifers. Journal of Geophysical Research, 117, B06204, doi:10.1029/2011JB008906.
  14. Kwak, J.H., Hu, J.Z., Turcu, R.V.F., Rosso, K.M., Ilton, E.S., Wang, C., Sears, J.A., Engelhard, M.H., Felmy, A.R. and Hoyt, D.W., 2011, The role of $H_2O$ in the carbonation of forsterite in supercritical $CO_2$. International Journal of Greenhouse Gas Control, 5, 1081-1092. https://doi.org/10.1016/j.ijggc.2011.05.013
  15. Loring, J.S., Schaef, H.T., Thompson, C.J., Turcu, R.V., Miller, Q.R., Chen, J., Hu, J., Hoyt, D.W., Martin, P.F., Ilton, E.S., Felmy, A.R. and Rosso, K.M., 2013, Clay hydration/dehydration in dry to water-saturated supercritical $CO_2$: Implications for caprock integrity. Energy Procedia, 37, 5443-5448 https://doi.org/10.1016/j.egypro.2013.06.463
  16. Montes-Hernandez, G. and Pironon, J., 2009, Hematite and iron carbonate precipitation-coexistence at the iron-montmorillonite-salt solution-$CO_2$ interfaces under high gas pressure at $150^{\circ}C$. Applied Clay Science, 45, 194-200. https://doi.org/10.1016/j.clay.2009.06.004
  17. Romanov, V.N., 2013, Evidence of irreversible $CO_2$ intercalation in montmorillonite. International Journal of Greenhouse Gas Control, 14, 220-226. https://doi.org/10.1016/j.ijggc.2013.01.022
  18. Rozalen, M., Huertas, F.J., Brady, P.V., Cama, J., Garcia-Palma, S. and Linares, J., 2008, Experimental study of the effect of pH on the kinetics of montmorillonite dissolution at $25^{\circ}C$. Geochimica et Cosmochimica Acta, 4224-4253.
  19. Sparks, D.L., 2002, Environmental Soil Chemistry. Academic Press, San Diego, 352 p.
  20. Yoo, S., Mito, Y., Ueda, A. and Matsuok, T., 2013, Geochemical clogging in fracture and porous rock for $CO_2$ mineral trapping. Energy Procedia, 37, 5612-5619. https://doi.org/10.1016/j.egypro.2013.06.483