DOI QR코드

DOI QR Code

Composition Design of Nanocrystalline Bainitic Steels by Diffusionless Solid Reaction

  • Garcia-Mateo, Carlos (National Center for Metallurgical Research (CENIM-CSIC), Department of Physical Metallurgy. MATERALIA Research Group) ;
  • Caballero, Francisca G. (National Center for Metallurgical Research (CENIM-CSIC), Department of Physical Metallurgy. MATERALIA Research Group) ;
  • Sourmail, Thomas (Ascometal-CREAS (Research Centre) Metallurgy) ;
  • Cornide, Juan (National Center for Metallurgical Research (CENIM-CSIC), Department of Physical Metallurgy. MATERALIA Research Group) ;
  • Smanio, Veronique (Ascometal-CREAS (Research Centre) Metallurgy) ;
  • Elvira, Roberto (Gerdau I+D EUROPA S. A. Barrio Ugarte)
  • Received : 2013.06.25
  • Accepted : 2013.10.09
  • Published : 2014.05.20

Abstract

NANOBAIN is the term used to refer to a new generation of advanced steels capable of producing by isothermal transformation at low homologous temperatures, $T/T_m$~0.25 where $T_m$ is the absolute melting temperature, a nanocrystalline microstructure, composed exclusively of two phases, thin plates of bainitic ferrite separated by C enriched austenite. Such alloys are exclusively designed on the basis of bainitic transformation theory and some physical metallurgy principles. In this work, by designing a new set of alloys capable of producing such microstructure, a further step toward the industrialization of NANOBAIN is taken. Some important industrial requirements, including circumventing the inclusion of expensive alloying elements and the need for faster transformations, are also considered. For all the alloys, the experimental results validate the design procedure and they illustrate that the NANOBAIN concept is a step closer to industrialization, probing that it is possible to obtain nanocristalline bainite in simpler alloy systems and in shorter times than those reported previously.

Keywords

References

  1. C. Garcia-Mateo and H. K. D. H. Bhadeshia, Mater. Sci. Eng. A 378, 289 (2004). https://doi.org/10.1016/j.msea.2003.10.355
  2. G. B. Olson and M. Cohen, Metall. Trans. A 7, 1897 (1976).
  3. H. K. D. H. Bhadeshia, Bainite in Steels. Transformations, Microstructure and Properties, Institute of Materials, Minerals and Mining, London (2001).
  4. H. K. D. H. Bhadeshia, Acta Metall. 29, 1117 (1981). https://doi.org/10.1016/0001-6160(81)90063-8
  5. H. K. D. H. Bhadeshia and A. R. Waugh, Acta Metall. 30, 775 (1982). https://doi.org/10.1016/0001-6160(82)90075-X
  6. C. Garcia-Mateo, F. G. Caballero, and H. K. D. H. Bhadeshia, ISIJ Int. 43, 1238 (2003). https://doi.org/10.2355/isijinternational.43.1238
  7. F. G. Caballero, H. K. D. H. Bhadeshia, K. J. A. Mawella, D. G. Jones, and P. Brown, Mater. Sci. Technol. 18, 279 (2002). https://doi.org/10.1179/026708301225000725
  8. C. Garcia-Mateo, F. G. Caballero, and H. K. D. H. Bhadeshia, ISIJ Int. 43, 1821 (2003). https://doi.org/10.2355/isijinternational.43.1821
  9. H. I. Aaronson, H. A. Domian, and G. M. Pound, Trans. Metall. AIME 236, 781 (1966).
  10. F. G. Caballero, H. K. D. H. Bhadeshia, K. J. A. Mawella, D. G. Jones, and P. Brown, Mater. Sci. Technol. 17, 517 (2001). https://doi.org/10.1179/026708301101510357
  11. C. Garcia-Mateo and F. G. Caballero, ISIJ Int. 45, 1736 (2005). https://doi.org/10.2355/isijinternational.45.1736
  12. E. Kozeschnik and H. K. D. H. Bhadeshia, Mater. Sci. Technol. 24, 343 (2008). https://doi.org/10.1179/174328408X275973
  13. S. B. Singh and H. K. D. H. Bhadeshia, Mater. Sci. Eng. A 245, 72 (1998). https://doi.org/10.1016/S0921-5093(97)00701-6
  14. H. K. D. H. Bhadeshia and D. V. Edmonds, Met. Sci. 17, 411 (1983).
  15. V. Heuer, K. Löser, and J. Ruppel, HTM Haerterei Tech. Mitt. 64, 28 (2009).
  16. C. H. Young and H. K. D. H. Bhadeshia, Mater. Sci. Technol. 10, 209 (1994). https://doi.org/10.1179/mst.1994.10.3.209
  17. F. G. Caballero, H. K. D. H. Bhadeshia, K. J. A. Mawella, D. G. Jones, and P. Brown, Mater. Sci. Technol. 17, 512 (2001). https://doi.org/10.1179/026708301101510348
  18. F. G. Caballero, M. J. Santofimia, C. Capdevila, C. Garcia-Mateo, and C. De Garcia Andres, ISIJ Int. 46, 1479 (2006). https://doi.org/10.2355/isijinternational.46.1479
  19. C. Garcia-Mateo and F. G. Caballero, Int. J. Mater. Res. 98, 137 (2007). https://doi.org/10.3139/146.101440
  20. F. G. Caballero, M. K. Miller, C. Garcia-Mateo, C. Capdevila, and C. Garcia de Andres, JOM 60, 16 (2008).
  21. L. C. Chang and H. K. D. H. Bhadeshia, Mater. Sci. Technol. 11, 874 (1995). https://doi.org/10.1179/mst.1995.11.9.874
  22. C. G. de Andres, F. G. Caballero, C. Capdevila, and D. San Martin, Mater. Charact. 49, 121 (2002). https://doi.org/10.1016/S1044-5803(03)00002-0
  23. C. G. de Andres, M. J. Bartolome, C. Capdevila, D. S. Martin, F. G. Caballero, and V. Lopez, Mater. Charact. 46, 389 (2001). https://doi.org/10.1016/S1044-5803(01)00142-5
  24. C. Garcia-Mateo, F. G. Caballero, M. K. Miller, and J. A. Jimenez, J. Mater. Sci. 47, 1004 (2012). https://doi.org/10.1007/s10853-011-5880-2
  25. MTDATA, NPL Software Tool for the Calculation of Phase Equilibria and Thermodynamic Properties, National Physical Laboratory, Teddington, United Kingdom, 2006.
  26. J. W. Cahn and W. C. Hagel, Decomposition of Austenite by Diffusional Processes, John Wiley, New York (1962).
  27. A. S. Pandit, Theory of the Pearlite Transformation in Steels, University of Cambridge (2011).
  28. H. K. D. H. Bhadeshia and D. V. Edmonds, Metall. Trans. A 10, 895 (1979). https://doi.org/10.1007/BF02658309
  29. L. C. Chang and H. K. D. H. Bhadeshia, Mater. Sci. Technol. 11, 105 (1995). https://doi.org/10.1179/mst.1995.11.2.105
  30. I. B. Timokhina, H. Beladi, X. Y. Xiong, Y. Adachi, and P. D. Hodgson, Acta Mater. 59, 5511 (2011). https://doi.org/10.1016/j.actamat.2011.05.024
  31. E. Pereloma, H. Beladi, L. Zhang, and I. Timokhina, Metall. Mater. Trans. A 43, 3958 (2012). https://doi.org/10.1007/s11661-011-0782-0
  32. F. G. Caballero, H. W. Yen, M. K. Miller, J. R. Yang, J. Cornide, and C. Garcia-Mateo, Acta Mater. 59, 6117 (2011). https://doi.org/10.1016/j.actamat.2011.06.024
  33. H. K. D. H. Bhadeshia, Met. Sci. 16, 159 (1982). https://doi.org/10.1179/030634582790427217
  34. J. Cornide, C. Garcia-Mateo, C. Capdevila, and F. Caballero, J. Alloy. Compd. 577, S43-S47 (2012).
  35. K. J. Irvine, T. Gladman, and P. F. B., J. Iron Steel Inst. 207, 1017 (1969).

Cited by

  1. Hardenability of Nanocrystalline Bulk Steel vol.71, pp.2, 2014, https://doi.org/10.1007/s12666-017-1180-0
  2. Low-Temperature Bainite: A Thermal Stability Study vol.49, pp.6, 2014, https://doi.org/10.1007/s11661-018-4595-2
  3. Role of Prior Martensite in a 2.0 GPa Multiple Phase Steel vol.89, pp.10, 2014, https://doi.org/10.1002/srin.201800207
  4. Quantitative Assessment of the Time to End Bainitic Transformation vol.9, pp.9, 2014, https://doi.org/10.3390/met9090925
  5. Effect of microsegregation on carbide-free bainitic transformation in a high-silicon cast steel vol.36, pp.6, 2014, https://doi.org/10.1080/02670836.2020.1732076
  6. The Effects of Micro-Segregation on Isothermal Transformed Nano Bainitic Microstructure and Mechanical Properties in Laser Cladded Coatings vol.13, pp.13, 2014, https://doi.org/10.3390/ma13133017
  7. Development of ultra-high strength carbide-free bainitic cast steels vol.33, pp.6, 2014, https://doi.org/10.1080/13640461.2020.1843778
  8. Development of shielded metal arc welding electrodes to achieve carbide-free bainitic weld microstructures vol.65, pp.1, 2014, https://doi.org/10.1007/s40194-020-00987-z
  9. Ferrite and Carbide Mixtures in Sintered Hyper-Eutectoid Fe-xMo-0.90C Alloys vol.223, pp.1, 2014, https://doi.org/10.1080/10584587.2021.1964285