DOI QR코드

DOI QR Code

Effect of Road Gradient on Fuel Consumption of Passenger Car

도로의 경사가 승용차 유류소모량에 미치는 영향

  • Received : 2014.07.03
  • Accepted : 2014.08.19
  • Published : 2014.08.31

Abstract

Even though vehicle types, gradient, pavement conditions and types of pavement should be considered for estimating fuel consumption, existing models were developed as a function of vehicle types and vehicle speed. Therefore in this study, the model of fuel consumption was developed using field test data in order that effect analysis on the passenger vehicle fuel consumption by road gradient. At first, fuel consumption was measured in second-based, using GPS device and fuel consumption measurement device for development of fuel consumption model considered road gradient. The road gradient was classified as flatland, up-hill and down-hill. Development of model was using by regression model which vehicle speed(km/h) and fuel consumption(${\ell}/km$). The on-road test proved that fuel consumption of passenger vehicle is affected by road gradient.

유류소모량 산정 모형 개발을 위해서는 차종, 도로의 경사, 포장상태, 포장종류 등 다양한 변수들을 고려해야 하지만 현재 사용하고 있는 국토교통부의 투자평가지침에도 차종으로만 구분이 되어 있을 뿐 다양한 요인들을 고려하지 못하고 있는 실정이다. 본 연구에서는 도로의 경사도가 승용차의 유류소모량에 미치는 영향을 분석하기 위해 실제 주행실험을 통해 얻은 데이터를 기반으로 유류소모량 산정 모형을 개발하고 적용성을 검증하는 것을 목적으로 한다. 경사도에 따른 유류소모량 모형 개발을 위해 GPS 장비와 연비측정장비를 이용하여 실제 주행실험을 통해 유류소모량을 초(sec)단위로 측정하였다. 평지(${\pm}0{\sim}2%$), 오르막(+2~5%), 내리막(-2~5%)의 세 가지 경사도로 구분하였으며 차량의 속도와 유류소모량을 변수로 하는 회귀모형을 이용하여 모형을 개발하였다. 승용차의 유류소모량은 내리막, 평지, 오르막 순으로 커지는 것을 확인할 수 있었다.

Keywords

References

  1. Ministry of Land, Infrastructure and Transport, 5th Investment Evaluation Guide for Transportation Facilities, pp.178, 2013a.
  2. J. S. Oh, H. K. Eo, "A Comparative study on fuel consumption depending on the use of lift axle," J. of the Korean Society of Road Engineers., vol. 13, no.3, pp.185-193, Sep. 2011. https://doi.org/10.7855/IJHE.2011.13.3.185
  3. I. K. Yoo, J. W. Kim, S. H. Lee, K. H. Ko, "Comparison of fuel consumption estimation for passenger cars," J. of the Korean Society of Road Engineers., vol. 13, no. 4, pp.167-175, Dec. 2011. https://doi.org/10.7855/IJHE.2011.13.4.167
  4. S. C. Choi, "Eco-driving method at highway including grade using GPS altitude data," J. of academia-industrial technology, vol. 12(1), pp.19-25, Jan. 2011. https://doi.org/10.5762/KAIS.2011.12.1.019
  5. M. Barth, G. Scora, T. Younglove, "Estimating emissions and fuel consumption for different levels of freeway congestion," Transportation Reearch Record 1664, vol. 1664, pp.47-57, Jan. 2007.
  6. W. T. Hung, H. Y. Tong, C. S. Cheung, "A Modal approach to vehicular emissions and fuel consumption model development," J. of the Air Waste Management Assoc, vol. 55(10), pp.1431-1440. Mar. 2012.
  7. R. Akcelik, M. Besley, "Operating cost, fuel consumption, and emission models in aaSIDRA and aaMOTION," 25th Conference of Australian Institutes of Transport Research (CAITR 2003), Dec. 2003.
  8. S. Palinee, A. Siamak A, R. Stefan A, "Effect of pavement type on fuel consumption and emissions," 2009 Mid-continent Transportation Research Symposium, Sep. 2009.
  9. Ministry of Land, Infrastructure and Transport, Highway Capacity Manual, pp.166, 2013b.

Cited by

  1. Development of a Fuel-Efficient Driving Method based on Slope and Length of Uphill Freeway Section vol.14, pp.1, 2015, https://doi.org/10.12815/kits.2015.14.1.077
  2. Effect of Passenger Car Fuel Consumptions and Fuel Cost Savings by Hi-Pass System vol.14, pp.1, 2015, https://doi.org/10.12815/kits.2015.14.1.094
  3. Driving Methology for Smart Transportation under Longitudinal and Curved Section of Freeway vol.16, pp.3, 2017, https://doi.org/10.12815/kits2017.16.3.73