DOI QR코드

DOI QR Code

Flame Response Modeling for Lean Premixed Combustors Using CFD

CFD를 이용한 희박 예혼합 연소기에서의 연소 응답 모델링

  • Kim, Daesik (School of Mechanical and Automotive Engineering, Gangneung-Wonju Nat'l Univ.) ;
  • Lee, Jeongwon (ANSYS Korea)
  • Received : 2014.06.03
  • Accepted : 2014.07.17
  • Published : 2014.09.01

Abstract

A qualitative and quantitative analysis on flame dynamics is required to model combustion instability characteristics in gas turbine lean premixed combustors. The current paper shows the flame transfer function modeling results using CFD(Computational Fluid Dynamics) techniques for the flame dynamics study. It is generally known that flame shapes determine the basic characteristics of the flame transfer function. The comparisons of the modeled flame shapes with the measured ones were made using the optimized heat transfer conditions. Modeling results of the flame transfer function show the close behaviors to the measured data with a reasonable accuracy if the flame geometry can be exactly captured.

가스터빈 희박 예혼합 연소기에서 발생하는 연소 불안정 현상을 모델링하기 위해서는 화염의 동 특성에 대한 정량적, 정성적 분석이 필수적이다. 이를 위하여 화염전달함수가 전산유체역학을 통하여 모델링되었다. 기존 화염전달함수의 연구 결과로부터, 화염전달함수의 결과는 화염의 구조에 크게 의존하는 것으로 알려졌다. 본 연구에서는 실제 계측된 화염의 구조와 유사한 형상을 갖도록 열전달 조건을 최적화한 후, 동일 조건에서 화염전달함수가 모델링되었다. 화염의 형상을 정확하게 예측할 수 있다면, 이로부터 전달함수의 이득값과 위상차의 모델링 결과 역시 실험값과 유사한 거동을 확인할 수 있었다.

Keywords

References

  1. Cha, D. J., Kim, J. H. and Joo, Y. J., 2009, "Analysis of the Combustion Instability of a Model Gas Turbine Combustor by the Transfer Matrix Method," Journal of Mechanical Science and Technology, Vol. 23, No. 6, pp. 1602-1612. https://doi.org/10.1007/s12206-009-0427-z
  2. Seo, S. B., Ahn, D. H. and Cha, D. J., 2012, "Analysis of the Combustion Oscillation in a Silo-Type Gas Turbine Combustor and Its Suppression," Journal of Mechanical Science and Technology, Vol. 26, No. 4, pp. 1235-1240. https://doi.org/10.1007/s12206-012-0205-1
  3. Lee, D., Park, J., Jin, J. and Lee, M., 2011, "A Simulation for Prediction of Nitrogen Oxide Emissions in Lean Premixed Combustor," Journal of Mechanical Science and Technology, Vol. 25, No. 7, pp. 1871-1878. https://doi.org/10.1007/s12206-011-0425-9
  4. Kang, S., Kim, Y. and Lee, K., 2009, "Numerical Simulation of Structure and NO Formation of Turbulent Lean-Premixed Flames in Gas Turbine Conditions," Journal of Mechanical Science and Technology, Vol. 23, No. 12, pp. 3424-3435. https://doi.org/10.1007/s12206-009-1017-9
  5. Kim, K. and Santavicca, D., 2009, "Linear Stability Analysis of aAoustically Driven Pressure Oscillations in a Lean Premixed Gas Turbine Combustor," Journal of Mechanical Science and Technology, Vol. 23, No. 12, pp. 3436-3447. https://doi.org/10.1007/s12206-009-0924-0
  6. Kim, D., Lee, J., Quay, B., Santavicca, D., Kim, K. and Srinivasan, S., 2010, "Effect of Flame Structure on the Flame Transfer Function in a Premixed Gas Turbine Combustor," Journal of Engineering for Gas Turbine and Power, Vol. 132, No. 2, 021502. https://doi.org/10.1115/1.3124664
  7. Kim, D., 2011, "Introduction to Flame Transfer Function in a Lean Premixed Gas Turbine Combustor," Trans. Korean Soc. Mech. Eng. B, Vol. 35, No. 9, pp. 975-979. https://doi.org/10.3795/KSME-B.2011.35.9.975
  8. Kim, D. and Kim, K., 2014,, "Improved Thermoacoustic Model Considering Heat Release Distribution," Trans. Korean Soc. Mech. Eng. B, under publication.
  9. Kim, D., 2012, "Linear Stability Analysis in a Gas Turbine Combustor Using Thermoacoustic Models," Journal of the Korean Society of Combustion, Vol. 17, No. 2, pp. 17-23.
  10. Nicoud, F., Benoit, L., Sensiau, C. and Poinsot, T., 2007, "Acoustic Modes in Combustors with Complex Impedances and Multidimensional Active Flames," AIAA Journal, Vol. 45, No. 2, pp. 426-441. https://doi.org/10.2514/1.24933
  11. Kim, S. K., Choi, H. S. and Cha, D. J., 2010, "Development of Helmholtz Solver for Thermo-Acoustic Instability Within Combustion Devices," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 38, No. 5, pp. 445-455. https://doi.org/10.5139/JKSAS.2010.38.5.445
  12. Truffin, K. and Poinsot, T., 2005, "Comparison and Extension of Methods for Acoustic Identification of Burners," Combustion and Flame, Vol. 142, No. 4, pp. 388-400. https://doi.org/10.1016/j.combustflame.2005.04.001
  13. Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z. and Zhu, J., 1995, "A New k-${\varepsilon}$ Eddy Viscosity Model for High Reynolds Number Turbulent Flows," Computers and fluids, Vol. 24, No. 3, pp. 227-238. https://doi.org/10.1016/0045-7930(94)00032-T
  14. ANSYS Fluent 15.0 Users Guide, ANSYS Inc., 2014.
  15. Abdelgayed, H. M., Abdelghaffar, W. A. and Shorbagy, K. E., 2013, "Flame Vortex Interactions in a Lean Premixed Swirl Stabilized Gas Turbine Combustor - Numerical Computations," American Journal of Scientific and Industrial Research, Vol. 4, No. 5, pp. 449-467.