DOI QR코드

DOI QR Code

IL-33 Priming Enhances Peritoneal Macrophage Activity in Response to Candida albicans

  • Tran, Vuvi G. (School of Biological Sciences, University of Ulsan) ;
  • Cho, Hong R. (Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan) ;
  • Kwon, Byungsuk (School of Biological Sciences, University of Ulsan)
  • Received : 2014.06.13
  • Accepted : 2014.07.24
  • Published : 2014.08.31

Abstract

IL-33 is a member of the IL-1 cytokine family and plays a role in the host defense against bacteria, viruses, and fungi. In this study, we investigated the function of IL-33 and its receptor in in vitro macrophage responses to Candida albicans. Our results demonstrate that pre-sensitization of isolated peritoneal macrophages with IL-33 enhanced their pro-inflammatory cytokine production and phagocytic activity in response to C. albicans. These macrophage activities were entirely dependent on the ST2-MyD88 signaling pathway. In addition, pre-sensitization with IL-33 also increased ROS production and the subsequent killing ability of macrophages following C. albicans challenge. These results indicate that IL-33 may increase anti-fungal activity against Candida through macrophage-mediated resistance mechanisms.

Keywords

References

  1. Moussion, C., N. Ortega, and J.-P. Girard. 2008. The IL-1lLike cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells: a novel 'alarmin'? PLoS One 3: e3331. https://doi.org/10.1371/journal.pone.0003331
  2. Liew, F. Y., N. I. Pitman, and I. B. McInnes. 2010. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat. Rev. Immunol. 10: 103-110. https://doi.org/10.1038/nri2692
  3. Le, H., W. Kim, J. Kim, H. R. Cho, and B. Kwon. 2013. Interleukin-33: a mediator of inflammation targeting hematopoietic stem and progenitor cells and their progenies. Front. Immunol. 4:104.
  4. Romani, L. 2011. Immunity to fungal infections. Nat. Rev. Immunol. 11: 275-288. https://doi.org/10.1038/nri2939
  5. Lionakis, M. S., and M. G. Netea. 2013. Candida and host determinants of susceptibility to invasive candidiasis. PLoS Pathog. 9: e1003079. https://doi.org/10.1371/journal.ppat.1003079
  6. Brown, G. D., D. W. Denning, N. A. Gow, S. M. Levitz, M.G. Netea, and T. C. White. 2012. Hidden killers: human fungal infections. Sci. Transl. Med. 4: 165rv13.
  7. Lionakis, M. S., B. G. Fischer, J. K. Lim, M. Swamydas, W. Wan, C. C. Richard Lee, J. I. Cohen, P. Scheinberg, J. L. Gao, and P. M. Murphy. 2012. Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis. PLoS Pathog. 8: e1002865. https://doi.org/10.1371/journal.ppat.1002865
  8. Majer, O., C. Bourgeois, F. Zwolanek, C. Lassnig, D. Kerjaschki, M. Mack, M. Muller, and K. Kuchler. 2012. Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during Candida infections. PLoS Pathog. 8: e1002811. https://doi.org/10.1371/journal.ppat.1002811
  9. Le, H. T., V. G. Tran, W. Kim, J. Kim, H. R. Cho, and B. Kwon. 2012. IL-33 priming regulates multiple steps of the neutrophil-mediated anti-Candida albicans response by modulating TLR and dectin-1 signals. J. Immunol. 189: 287-295. https://doi.org/10.4049/jimmunol.1103564
  10. Kim, J., W. Kim, H. T. Le, U. J. Moon, V. G. Tran, H. J. Kim, S. Jung, Q.-T. Nguyen, B.-S. Kim, J.-B. Jun, H. R. Cho, and B. Kwon. 2014. IL-33-induced hematopoietic stem and progenitor cell mobilization depends upon CCR2. J. Immunol. doi: 10.4049/jimmunol.1400176.
  11. Schmitz, J., A. Owyang, E. Oldham, Y. Song, E. Murphy, T. K. McClanahan, G. Zurawski, M. Moshrefi, J. Qin, X. Li, D. M. Gorman, J. F. Bazan, and R. A. Kastelein. 2005. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23: 479-490. https://doi.org/10.1016/j.immuni.2005.09.015
  12. Brown, G. D. 2011. Innate antifungal immunity: the key role of phagocytes. Annu. Rev. Immunol. 29: 1-21. https://doi.org/10.1146/annurev-immunol-030409-101229
  13. Cheng, S.-C., L. A. Joosten, B. J. Kullberg, and M. G. Netea. 2012. Interplay between Candida albicans and the mammalian innate host defense. Infect. Immun. 80: 1304-1313. https://doi.org/10.1128/IAI.06146-11
  14. Missall, T. A., J. K. Lodge, and J. E. McEwen. 2004. Mechanisms of resistance to oxidative and nitrosative stress: implications for fungal survival in mammalian hosts. Eukaryot. Cell 3: 835-846. https://doi.org/10.1128/EC.3.4.835-846.2004
  15. Wellington, M., K. Dolan, and D. J. Krysan. 2009. Live Candida albicans auppresses production of reactive oxygen species in phagocytes. Infec. Immun. 77: 405-413. https://doi.org/10.1128/IAI.00860-08
  16. Lewis, L. E., J. M. Bain, C. Lowes, C. Gillespie, F. M. Rudkin, N. A. Gow, and L. P. Erwig. 2012. Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants. PLoS Pathog. 8: e1002578. https://doi.org/10.1371/journal.ppat.1002578
  17. Marcil, A., D. Harcus, D. Y. Thomas, and M. Whiteway. 2002. Candida albicans Killing by RAW 264.7 mouse macrophage cells: effects of Candida genotype, infection ratios, and gamma interferon treatment. Infec. Immun. 70: 6319-6329. https://doi.org/10.1128/IAI.70.11.6319-6329.2002
  18. Gales, A., A. Conduche, J. Bernad, L. Lefevre, D. Olagnier, M. Beraud, G. Martin-Blondel, M. D. Linas, J. Auwerx, A. Coste, and B. Pipy. 2010. $PPAR\gamma$ controls Dectin-1 expression required for host antifungal defense against Candida albicans. PLoS Pathog. 2010. 6: e1000714. https://doi.org/10.1371/journal.ppat.1000714
  19. Nelson, M.P., B. S. Christmann, J. L. Werner, A. E. Metz, J. L. Trevor, C. A. Lowell, and C. Steele. 2011. IL-33 and M2a Alveolar Macrophages Promote Lung Defense against the Atypical Fungal Pathogen Pneumocystis murina. J. Immunol. 186: 2372-2381. https://doi.org/10.4049/jimmunol.1002558

Cited by

  1. 4-Isopropyl-2,6-bis(1-phenylethyl)aniline 1, an Analogue of KTH-13 Isolated from Cordyceps bassiana , Inhibits the NF- κ B-Mediated Inflammatory Response vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/143025
  2. Pyrrole-Derivative of Chalcone, (E)-3-Phenyl-1-(2-Pyrrolyl)-2-Propenone, Inhibits Inflammatory Responses via Inhibition of Src, Syk, and TAK1 Kinase Activities vol.24, pp.6, 2014, https://doi.org/10.4062/biomolther.2016.027
  3. IL33 attenuates ventricular remodeling after myocardial infarction through inducing alternatively activated macrophages ethical standards statement vol.854, pp.None, 2014, https://doi.org/10.1016/j.ejphar.2019.04.046