DOI QR코드

DOI QR Code

Optimizing Levels of Water and Nitrogen Applied through Drip Irrigation for Yield, Quality, and Water Productivity of Processing Tomato (Lycopersicon esculentum Mill.)

  • Kuscu, Hayrettin (Department of Plant Production, Vocational School of Mustafakemalpasa, University of Uludag) ;
  • Turhan, Ahmet (Department of Plant Production, Vocational School of Mustafakemalpasa, University of Uludag) ;
  • Ozmen, Nese (Department of Food Processing, Vocational School of Mustafakemalpasa, University of Uludag) ;
  • Aydinol, Pinar (Department of Food Processing, Vocational School of Mustafakemalpasa, University of Uludag) ;
  • Demir, Ali Osman (Department of Biosystems Engineering, Faculty of Agriculture, University of Uludag)
  • Received : 2013.12.16
  • Accepted : 2014.03.09
  • Published : 2014.04.30

Abstract

The main goal of this study was to evaluate the effects of different levels of irrigation water and nitrogen on yield, quality, and water productivity of processing tomato grown in clay-loam soil. Three water levels of pan evaporation ($E_{pan}$) replenishment applied via drip irrigation ($1.00{\times}E_{pan}$, $0.75{\times}E_{pan}$, and $0.50{\times}E_{pan}$) and four N application rates with fertigation (0, 60, 120, and $180kgN{\cdot}ha^{-1}$) were tested in the sub-humid climate conditions of Turkey during the 2010 and 2011 growing seasons. The highest marketable yields were observed with full irrigation ($1.00{\times}E_{pan}$) for each season. Decreasing irrigation rate generally improved dry matter, total soluble solids, total sugars, titratable acidity, lycopene and total carotene, and decreased fruit $NO_3$-N content and fruit total protein content slightly. The highest water productivity was obtained with a moderate soil water deficit ($0.75{\times}E_{pan}$). The $180kgN{\cdot}ha^{-1}$ fertilization rate produced the highest values for marketable yield, fruit size, total soluble solids yield, $NO_3$-N, and total protein content. Increasing N rate also increased the values of fruit total sugars and titratable acidity. Increasing both irrigation and N levels increased the $NO_3$-N and protein contents. The higher lycopene and total carotene values were obtained in the treatments of 60 and $120kgN{\cdot}ha^{-1}$. Increasing N supply improved the water productivity with the 3 irrigation application ratios. Considering the quantity and quality for the processing and water productivity, the $0.75{\times}E_{pan}$ irrigation regime and a 120 or $120kg{\cdot}ha^{-1}$ nitrogen supply can considered optimal.

Keywords

References

  1. Adsule, P.G. and A. Dan. 1979. Simplified extraction procedure in the rapid spectrophotometric method for lycopene estimation in tomato. J. Food Sci. Technol. 16:216-218.
  2. Al-Mohammadi, F. and Y. Al-Zu'bi. 2011. Soil chemical properties and yield of tomato as influenced by different levels of irrigation water and fertilizer. J. Agric. Sci. Technol. 13:289-299.
  3. Association of Official Analytical Chemists (AOAC). 1980. Official methods of analysis. 12th edition. AOAC, Washington, D.C.
  4. Ayaz, A., A. Topçu, and M. Yurttagul. 2007. Survey of nitrate and nitrite levels of fresh vegetables in Turkey. J. Food Technol. 5:177-179.
  5. Benard, C., H. Gautier, F. Bourgaud, D. Grasselly, B. Navez, C. Caris-Veyrat, M. Weiss, and M. Genard. 2009. Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds. J. Agric. Food Chem. 57:4112-4123. https://doi.org/10.1021/jf8036374
  6. Campiglia, E., R. Mancinelli, and E. Radicetti. 2011. Influence of no-tillage and organic mulching on tomato (Solanum lycopersicum L.) production and nitrogen use in the Mediterranean environment of central Italy. Sci. Hort.130:588-598. https://doi.org/10.1016/j.scienta.2011.08.012
  7. Candido, V., V. Miccolis, and M. Perniola. 2000. Effects of irrigation regime on yield of processing tomato (Lycopersicon esculentum Mill.) cultivars. Acta Hort. 537:779-788.
  8. Cetin, O., O. Yıldırım, D. Uygan, and H. Boyacı. 2002. Irrigation scheduling of drip-irrigated tomatoes using class A pan evaporation. Turkish J. Agric. Forest. 26:171-178.
  9. DePascale, S., A. Maggio, V. Fogliano, P. Ambrosino, and A. Retieni. 2001. Irrigation with saline water improves carotenoids content and antioxidant activity of tomato. J. Hortic. Sci. Biotechnol. 76:447-453.
  10. Doorenbos, J. and A.H. Kassam. 1979. Yield response to water. United Nations FAO Publication no. 33, Rome, Italy.
  11. Djidonou, D., X. Zhao, E.H. Simonne, and K.E. Koch. 2013. Yield, water-, and nitrogen-use efficiency in field-grown, grafted tomatoes. HortScience 48:485-492.
  12. Dumas, Y., M. Dadomo, G. Di Lucca, and P. Grolier. 2003. Review: Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 83:369-382. https://doi.org/10.1002/jsfa.1370
  13. Erdal, I., A. Ertek, U. Senyigit, and H.I. Yilmaz. 2006. Effects of different irrigation programs and nitrogen levels on nitrogen concentration, uptake and utilisation in processing tomatoes (Lycopersicun esculentum). Austr. J. Exp. Agric. 46:1653-1660. https://doi.org/10.1071/EA04252
  14. Erdal, I., A. Ertek, U. Senyigit, and M.A. Koyuncu. 2007. Combined effects of irrigation and nitrogen on some quality parameters of processing tomato. World J. Agric. Sci. 3:57-62.
  15. Ertek, A., I. Erdal, H.I. Yilmaz, and U. Senyigit. 2012. Water and nitrogen application levels for the optimum tomato yield and water use efficiency. J. Agric. Sci. Technol. 14:889-902.
  16. Favati, F., S. Lovelli, F. Galgano, V. Miccolis, T. Di Tomasso, and V. Candido. 2009. Processing tomato quality as affected by irrigation scheduling. Sci. Hort. 122:562-571. https://doi.org/10.1016/j.scienta.2009.06.026
  17. Feddema, J.J. 2005. A revised Thornthwaite-type global climate classification. Phys. Geogr. 26:442-466. https://doi.org/10.2747/0272-3646.26.6.442
  18. Fresenius, W., K.E. Quentin, and W. Schneider. 1988. Water Analysis. A practical guide to physicochemical, chemical and microbiological water examination and quality assurance. Springer-Verlag, Berlin.
  19. Garrity, P.D., D.G. Watts, C.Y. Sullivan, and J.R. Gilley. 1982. Moisture deficits and grain sorghum performance, evapotranspiration yield relationships. Agron. J. 74:815-820. https://doi.org/10.2134/agronj1982.00021962007400050011x
  20. Gormley, T.R. and M.J. Maher. 1990. Tomato fruit quality-an interdisciplinary. Profess. Hort. 4:7-12.
  21. Hanson, B.R. and D.M. May. 2006. Crop evapotranspiration of processing tomato in the San Joaquin Valley of California, USA. Irrig. Sci. 24:211-221. https://doi.org/10.1007/s00271-005-0020-x
  22. Harmanto, V., M. Salokhe, M.S. Babel, and H.J. Tantau. 2005. Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment. Agric. Water Manag. 71:225-242. https://doi.org/10.1016/j.agwat.2004.09.003
  23. Hartz, T.K. and G.J. Hochmuth. 1996. Fertility management of dripirrigated vegetables. HortTechnol. 6:168-172.
  24. Hartz, T.K. and T.G. Bottoms. 2009. Nitrogen requirements of drip irrigated processing tomatoes. HortScience 44:1988-1993.
  25. Hebbar, S.S., B.K. Ramachandrappa, H.V. Nanjappa, and M. Prabhakar. 2004. Studies on NPK drip fertigation in field grown tomato (Lycopersicon esculentum Mill.). Eur. J. Agron. 21:117-127. https://doi.org/10.1016/S1161-0301(03)00091-1
  26. Johnstone, P.R., T.K. Hartz, M. LeStrange, J.J. Nunez, and E.M. Miyao. 2005. Managing fruit soluble solids with late-season deficit irrigation in drip-irrigated processing tomato production. HortScience 40:1857-1861.
  27. Kaboosi, K. and F. Kaveh. 2012. Sensitivity analysis of FAO 33 crop water production function. Irrig. Sci. 30:89-100. https://doi.org/10.1007/s00271-011-0263-7
  28. Kirda, C. 2002. Deficit irrigation scheduling based on plant growth stages showing water stress tolerance, p. 3-10. In: FAO (ed.). Deficit irrigation practices. FAO water report no. 22. FAO, Rome, Italy.
  29. Kirda, C., N. Baytorun, M.R. Derici, and H.Y. Dasgan. 2003. Nitrogen fertiliser recovery and yield response of greenhouse grown and fertigated tomato to root-zone soil water tension. Turk. J. Agric. Forest. 27:323-328.
  30. Kirda, C., M. Cetin, Y. Dasgan, S. Topcu, H. Kaman, B. Ekici, M.R. Derici, and A.I. Ozguven. 2004. Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agric. Water Manag. 69:191-201. https://doi.org/10.1016/j.agwat.2004.04.008
  31. Koskitalo, L.H. and D.P. Ormrod. 1972. Effects of sub-optimal ripening temperatures on the colour quality and pigment composition of tomato fruit. J. Food Sci. 37:56-59. https://doi.org/10.1111/j.1365-2621.1972.tb03384.x
  32. Kuscu, H., B. Cetin, and A. Turhan. 2009. Yield and economic return of drip-irrigated vegetable production in Turkey. New Zealand J. Crop Hort. Sci. 37:51-59. https://doi.org/10.1080/01140670909510249
  33. Lambelet, P., M. Richelle, K. Bortlik, F. Franceschi, and M. Giori. 2009. Improving the stability of lycopene Z-isomers in isomerised tomato extracts. Food Chem. 112:156-161. https://doi.org/10.1016/j.foodchem.2008.05.053
  34. Li, X., F. Liu, G. Li, Q. Lin, and C.R. Jensen. 2010. Soil microbial response, water and nitrogen use by tomato under different irrigation regimes. Agric. Water Manag. 98:414-418. https://doi.org/10.1016/j.agwat.2010.10.008
  35. Liu, K., T.Q. Zhang, C.S. Tan, and T. Astatkie. 2011. Responses of fruit yield and quality of processing tomatoto drip-irrigation and fertilizers phosphorus and potassium. Agron. J. 103:1339-1345. https://doi.org/10.2134/agronj2011.0111
  36. Locascio, S.J. and A.G. Smajstrla. 1996. Water application scheduling by pan evaporation for drip irrigated tomatoes. J. Amer. Soc. Hort. Sci. 121:63-68.
  37. Madrid, R., E.M. Barba, A. Sánchez, and A.L. García. 2009. Effects of organic fertilisers and irrigation level on physical and chemical quality of industrial tomato fruit (cv. Nautilus). J. Sci. Food Agric. 89:2608-2615. https://doi.org/10.1002/jsfa.3763
  38. Malash, N.M., T.J. Flowers, and R. Ragab. 2008. Effect of irrigation methods, management and salinity of irrigation water on tomato yield, soil moisture and salinity distribution. Irrig. Sci. 26:313-323. https://doi.org/10.1007/s00271-007-0095-7
  39. Markovicr, K., M. Hrusar, and N. Vahcic. 2006. Lycopene content of tomato products and their contribution to the lycopene intake of Croatians. Nutr. Res. 26:556-560. https://doi.org/10.1016/j.nutres.2006.09.010
  40. Matsuzoe, N., K. Zushi, and T. Johjima. 1998. Effect of soil water deficit on coloring and carotene formation in fruits of red, pink and yellow type cherry tomatoes. J. Japan. Soc. Hort. Sci. 67: 600-606. https://doi.org/10.2503/jjshs.67.600
  41. May, D.M. and J. Gonzales. 1994. Irrigation and nitrogen management as they affect fruit quality and yield of processing tomatoes. Acta Hort. 376:227-234.
  42. Mofoke, A.L.E., J.K. Adewumi, F.E. Babatunde, O.J. Mudiare, and A.A. Ramalan. 2006. Yield of tomato grown under continuous-flow drip irrigation in Bauchi state of Nigeria. Agric. Water Manag. 84:166-172. https://doi.org/10.1016/j.agwat.2006.02.001
  43. Moretti, C.L., S.A. Sargent, D.J. Huber, A.G. Calbo, and R. Puschmann. 1998. Chemical composition and physical properties of pericarp, locule and placental tissues of tomatoes with internal bruising. J. Amer. Soc. Hort. Sci. 123:656-660.
  44. Mukherjee, A., M. Kundu, and S. Sarkar. 2010. Role of irrigation and mulch on yield, evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L.). Agric. Water Manag. 98:182-189. https://doi.org/10.1016/j.agwat.2010.08.018
  45. Ozbahce, A. and A.F. Tari. 2010. Effects of different emitter space and water stress on yield and quality of processing tomato under semi-arid climate conditions. Agric. Water Manag. 97:1405-1410. https://doi.org/10.1016/j.agwat.2010.04.008
  46. Page, A.L., R.H. Miller, and D.R. Keeney. 1982. Methods of soil analysis. Part 2. Chemical and microbiological properties. 2nd ed. Amer. Soc. Agron., Madison, WI, USA.
  47. Pan, H.Y., K.J. Fisher, and M.A. Nichols. 1999. Fruit yield and maturity characteristics of processing tomatoes in response to drip irrigation. J. Vegetable Crop Prod. 5:13-29. https://doi.org/10.1300/J068v05n01_03
  48. Patane, C. and S.L. Cosentino. 2010. Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate. Agric. Water Manag. 97:131-138. https://doi.org/10.1016/j.agwat.2009.08.021
  49. Patane, C., S. Tringali, and O. Sortino. 2011. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Sci. Hort. 129:590-596. https://doi.org/10.1016/j.scienta.2011.04.030
  50. Payero, J.O., D.D. Tarkalson, S. Irmak, D. Davison, and J.L. Petersen. 2008. Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate. Agric. Water Manag. 95:895-908. https://doi.org/10.1016/j.agwat.2008.02.015
  51. Riggi, E., C. Patane, and G. Ruberto. 2008. Content of carotenoids at different ripening stages in processing tomato in relation to soil water availability. Austr. J. Agric. Res. 59:348-353. https://doi.org/10.1071/AR07215
  52. Rodica, S., S.A. Apahidean, M. Apahidean, D. Maniutiu, and L. Paulette. 2008. Yield, physical and chemical characteristics of greenhouse tomato grown on soil and organic substratum. 43rd Croatian and 3rd Intl. Symp. Agric. Opatija. Croatia. p. 439-443.
  53. Scholberg, J., B.L. McNeal, K.J. Boote, J.W. Jones, S.J. Locascio, and J.W. Olson. 2000. Nitrogen stress effects on growth and nitrogen accumulation by field-grown tomato. Agron. J. 95:159-167.
  54. Simion, V., G.H. Campeanu, G. Vasile, M. Artimon, L. Catana, and M. Negoita. 2008. Nitrate and nitrite accumulation in tomatoes and derived products. Roman. Biotechnol. Lett. 13:3785-3790.
  55. Simonne, A.H., J.M. Fuzere, E. Simonne, R.C. Hochmuth, and M.R. Marshall. 2007. Effects of nitrogen rates on chemical composition of yellow grape tomato grown in a subtropical climate. J. Plant Nutr. 30:927-935. https://doi.org/10.1080/15226510701375465
  56. Singandhupe, R.P., G.G.S.N. Rao, N.G. Patil, and P.S. Brahmanand. 2003. Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop (Lycopersicon esculentum L.). Eur. J. Agron. 19:327-340. https://doi.org/10.1016/S1161-0301(02)00077-1
  57. Tepic, A.N., B.L. Vejicic, A.J. Takac, B.D. Kristic, and L.J. Calic. 2006. Chemical heterogeneity of tomato inbred lines. Acta Period. Technol. 37:45-50.
  58. Tigchelaar, E.C. 1986. Tomato breeding, p. 135-171. In: M.J. Basset (ed.). Breeding of vegetable crops. AVI Pub. Co., Westport, CT, USA.
  59. Topcu, S., C. Kirda, Y. Dasgan, H. Kaman, M. Cetin, A. Yazici, and M.A. Bacon. 2007. Yield response and N-fertiliser recovery of tomato grown under deficit irrigation. Eur. J. Agron. 26:64-70. https://doi.org/10.1016/j.eja.2006.08.004
  60. Tzortzakis, N.G. and C.D. Economakis. 2008. Impacts of the substrate medium on tomato yield and fruit quality in soilless cultivation. Hort. Sci. 35:83-89.
  61. Tosun, I. and N.S. Ustun. 2004. Nitrate content of lettuce grown in the greenhouse. Bull. Environ. Contam. Toxicol. 72:109-113. https://doi.org/10.1007/s00128-003-0247-2
  62. TUIK. 2013. Turkish Statistical Institute. http://www.turkstat.gov.tr/ (Accessed 04.04.13).
  63. Wang, Y.T., S.W. Huang, R.L. Liu, and J.Y. Jin. 2007. Effects of nitrogen application on flavor compounds of cherry tomato fruits. J. Plant Nutr. Soil Sci. 170:461-468. https://doi.org/10.1002/jpln.200700011
  64. Wang, Q., F. Li, E. Zhang, G. Li, and M. Vance. 2012. The effects of irrigation and nitrogen application rates on yield of spring wheat (longfu-920), and water use efficiency and nitrate nitrogen accumulation in soil. Austr. J. Crop Sci. 6:662-672.
  65. Warner, J., T.Q. Zhang, and X. Hao. 2004. Effects of nitrogen fertilization on fruit yield and quality of processing tomatoes. Can. J. Plant Sci. 84:865-871. https://doi.org/10.4141/P03-099
  66. Yang, S.M., S.S. Malhi, J.R. Song, Y.C. Xiong, W.Y. Yue, L.L. Lu, J.G. Wang, and T.W. Guo. 2006. Crop yield, nitrogen uptake and nitrate-nitrogen accumulation in soil as affected by 23 annual applications of fertilizer and manure in the rainfed region of Northwestern China. Nutr. Cycling Agroecosys. 76:81-94. https://doi.org/10.1007/s10705-006-9042-x
  67. Yohannes, F. and T. Tadesse. 1998. Effect of drip and furrow irrigation and plant spacing on yield of tomato at Dire Dawa, Ethiopia. Agric. Water Manag. 35:201-207. https://doi.org/10.1016/S0378-3774(97)00039-5
  68. Zegbe, J.A., M.H. Behboudian, and B.E. Clothier. 2006. Responses of 'Petopride' processing tomato to partial rootzone drying at different phenological stages. Irrig. Sci. 24:203-210. https://doi.org/10.1007/s00271-005-0018-4
  69. Zegbe-Dominguez, J.A., M.H. Behboudian, A. Langand, and B.E. Clothier. 2003. Deficit irrigation and partial root-zone drying maintain fruit dry mass and enhance fruit quality in 'Petopride' processing tomato (Lycopersicon esculentum. Mill.). Sci. Hor. 98:505-510. https://doi.org/10.1016/S0304-4238(03)00036-0
  70. Znidarcic, D. and T. Pozrl. 2006. Comparative study of quality changes in tomato cv. 'Malike'(Lycopersicon esculentum Mill.) whilst stored at different temperatures. Acta Agric. Slovenica 87:235-243.
  71. Zotarelli, L., J.M. Scholberg, M.D. Dukes, R. Munoz-Carpena, and J. Icerman. 2009. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agric. Water Manag. 96:23-34. https://doi.org/10.1016/j.agwat.2008.06.007

Cited by

  1. Biomass, fruit yield, water productivity and quality response of processing tomato to plant density and deficit irrigation under a semi-arid Mediterranean climate vol.66, pp.2, 2014, https://doi.org/10.1071/cp14152
  2. Is it possible to enhance the concentrations of valuable compounds by reduced nitrogen supply in several vegetable species? vol.1106, pp.None, 2014, https://doi.org/10.17660/actahortic.2015.1106.9
  3. Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China vol.179, pp.None, 2017, https://doi.org/10.1016/j.agwat.2016.05.029
  4. Nitrogen use efficiency of processing tomato under deficit irrigation in semi-arid climate vol.1150, pp.None, 2014, https://doi.org/10.17660/actahortic.2017.1150.47
  5. Effects of substrate hydroponic systems and different N and K ratios on yield and quality of tomato fruit vol.41, pp.12, 2014, https://doi.org/10.1080/01904167.2018.1459689
  6. Hoppiness Is Happiness? Under-fertilized Hop Treatments and Consumers’ Willingness to Pay for Beer vol.13, pp.2, 2014, https://doi.org/10.1017/jwe.2018.26
  7. Nutritional quality of tomatoes as a function of nitrogen sources and doses vol.13, pp.19, 2018, https://doi.org/10.5897/ajar2017.12845
  8. Effects of nitrogen application rate and topdressing times on yield and quality of Chinese cabbage and soil nitrogen dynamics vol.31, pp.1, 2019, https://doi.org/10.1080/09542299.2018.1546555
  9. Response of Fertigation Under Buried Straw Layer on Growth, Yield, and Water-fertilizer Productivity of Chinese Cabbage Under Greenhouse Conditions vol.50, pp.8, 2014, https://doi.org/10.1080/00103624.2019.1603306
  10. Water-Nitrogen Coupling Effect on Drip-Irrigated Dense Planting of Dwarf Jujube in an Extremely Arid Area vol.9, pp.9, 2014, https://doi.org/10.3390/agronomy9090561
  11. Soil water status and growth of tomato with partial root-zone drying and deficit drip irrigation techniques vol.38, pp.2, 2014, https://doi.org/10.1007/s00271-019-00658-y
  12. The Effect of Fertigation on Cabbage (Brassica oleracea L. var. capitata) Grown in a Greenhouse vol.12, pp.4, 2014, https://doi.org/10.3390/w12041076
  13. Postharvest quality of tomato as affected by nitrogen and sulfur interaction vol.69, pp.2, 2014, https://doi.org/10.15446/acag.v69n2.73691
  14. Influence of Water Stress Levels on the Yield and Lycopene Content of Tomato vol.12, pp.8, 2014, https://doi.org/10.3390/w12082165
  15. Responses of growth, fruit yield, quality and water productivity of greenhouse tomato to deficit drip irrigation vol.275, pp.None, 2021, https://doi.org/10.1016/j.scienta.2020.109710
  16. Effect of Fertigation Levels on Water Consumption, Soil Total Nitrogen, and Growth Parameters of Brassica Chinensis under Straw Burial vol.52, pp.1, 2014, https://doi.org/10.1080/00103624.2020.1845345
  17. Productivity, Profitability, Enzyme Activities and Nutrient Balance in Summer Peanut (Arachis hypogaea L.) as Influenced by NPK Drip Fertigation vol.52, pp.5, 2014, https://doi.org/10.1080/00103624.2020.1854287
  18. Nitrogen and potassium supplied by phenological stages affect the carotenoid and nutritive content of the tomato fruit vol.49, pp.2, 2014, https://doi.org/10.15835/nbha49212320
  19. Combined Effects of Nutrients × Water × Light on Metabolite Composition in Tomato Fruits (Solanum Lycopersicum L.) vol.10, pp.7, 2021, https://doi.org/10.3390/plants10071437
  20. Replacing 30 % chemical fertilizer with organic fertilizer increases the fertilizer efficiency, yield and quality of cabbage in intensive open-field production vol.52, pp.7, 2014, https://doi.org/10.1590/0103-8478cr20210186