DOI QR코드

DOI QR Code

Resonantly excited ZnO nanowires for fabrication of high sensitivity gas sensor

  • Abdi, Y. (Nano-Physics Research Laboratory, Department of Physics, University of Tehran) ;
  • Jebreiil Khadem, S.M. (Nano-Physics Research Laboratory, Department of Physics, University of Tehran) ;
  • Afzali, P. (Nano-Physics Research Laboratory, Department of Physics, University of Tehran)
  • Received : 2013.08.14
  • Accepted : 2013.11.19
  • Published : 2014.03.31

Abstract

A novel approach for gas sensing based on mechanical resonance of ZnO nanowires is reported. For this purpose, ZnO nanowires were grown between comb-like electrodes using a novel oxygen plasma treatment approach. Then gas measurements were carried out at different agitating frequency. Results show an improvement in gas sensitivity of resonantly excited ZnO nanowires. Our results open up a promising approach to fabricate high sensitivity gas sensor. Also we have introduced an alternative frequency modulation gas detection method here.

Keywords

References

  1. R. Ramamoorthy, P.K. Dutta, S.A. Akbar, Oxygen sensors: materials, methods, designs and applications, J. Mater. Sci. 38 (2003) 4271. https://doi.org/10.1023/A:1026370729205
  2. L. Kong, Y. Shen, Gas-sensing property and mechanism of $Ca_xLa_{1-x}FeO_3$ ceramics, Sens. Actuators B 30 (1996) 217. https://doi.org/10.1016/0925-4005(96)80052-9
  3. H.W. Kim, H.G. Na, J.C. Yang, C. Lee, Temperature-controlled synthesis of $Zn_2GeO_4$ nanowires in a vaporeliquidesolid mode and their photoluminescence properties, Chem. Eng. 171 (2011) 1439. https://doi.org/10.1016/j.cej.2011.04.010
  4. S.R. Morrison, Semiconductor gas sensors, Sens. Actuators 2 (1982) 329.
  5. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors, Sensors 10 (2010) 2088. https://doi.org/10.3390/s100302088
  6. H. Bai, G. Shi, Gas sensors based on conducting polymers, Sensors 7 (2007) 267. https://doi.org/10.3390/s7030267
  7. L.O. Péres, R.W.C. Li, E.Y. Yamauchi, R. Lippi, J. Gruber, Conductive polymer gas sensor for quantitative detection of methanol in Brazilian sugar-cane spirit, Food Chem. 130 (4) (2012) 1105. https://doi.org/10.1016/j.foodchem.2011.08.014
  8. T. Zhang, S. Mubeen, N.V. Myung, M.A. Deshusses, Recent progress in carbon nanotube-based gas sensors, Nanotechnology 19 (2008) 332001. https://doi.org/10.1088/0957-4484/19/33/332001
  9. G. Chen, T.M. Paronyan, E.M. Pigos, A.R. Harutyunyan, Sub-ppt gas detection with pristine graphene, Sci. Rep. 2 (2012) 343.
  10. F. Patolsky, C.M. Lieber, Nanowire nanosensors, Mater. Today 8 (2005) 20.
  11. M.W. Ahn, K.S. Park, J.H. Heo, J.G. Park, D.W. Kim, K.J. Choi, J.H. Lee, S.H. Hong, Gas sensing properties of defect-controlled ZnO-nanowire gas sensor, Appl. Phys. Lett. 93 (2008) 263103. https://doi.org/10.1063/1.3046726
  12. M.W. Ahn, K.S. Park, J.h. Heo, D.W. Kim, K.J. Choi, J.G. Park, On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity, Sens. Actuators 138 (2009) 168. https://doi.org/10.1016/j.snb.2009.02.008
  13. A.N. Shipway, E. Katz, I. Willner, Nanoparticle arrays on surfaces for electronic, optical, and sensor applications, Chem. Phys. Chem. 1 (2000) 18.
  14. S. Vallejos, T. Stoycheva, P. Umek, C. Navio, R. Snyders, C. Bittencourt, E. Llobet, C. Blackman, S. Moniz, X. Correig, Au nanoparticle-functionalised $WO_3$ nanoneedles and their application in high sensitivity gas sensor devices, Chem. Commun. 47 (2011) 565. https://doi.org/10.1039/c0cc02398a
  15. C.M. Chang, M.H. Hon, I.C. Leu, Preparation of ZnO nanorod arrays with tailored defect-related characteristics and their effect on the ethanol gas sensing performance, Sens. Actuators B 151 (2010) 15. https://doi.org/10.1016/j.snb.2010.09.072
  16. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287 (2000) 637. https://doi.org/10.1126/science.287.5453.637
  17. X.D. Bai, P.X. Gao, Z.L. Wang, E.G. Wang, Dual-mode mechanical resonance of individual ZnO nanobelts, Appl. Phys. Lett. 82 (2003) 4806. https://doi.org/10.1063/1.1587878
  18. M.M. Treacy, T.W. Ebbesen, J.M. Gibson, Elastic properties of single-walled carbon nanotubes in compression, Nature 381 (1996) 678. https://doi.org/10.1038/381678a0
  19. P. Poncharal, Z. L Wang, D. Ugarte, W.A. de Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science 283 (1999) 1513. https://doi.org/10.1126/science.283.5407.1513
  20. W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science 277 (1997) 1971. https://doi.org/10.1126/science.277.5334.1971
  21. J.P. Salvetat, A.J. Kulik, J.M. Bonard, G.A.D. Briggs, T. Stocki, K. Metenier, S. Bonnamy, F. Beguin, N.A. Burnham, L. Forro, Elastic modulus of ordered and disordered multiwalled carbon nanotubes, Adv. Mater. 11 (1999) 161. https://doi.org/10.1002/(SICI)1521-4095(199902)11:2<161::AID-ADMA161>3.0.CO;2-J
  22. Y. Shi, C.Q. Chen, Y.S. Zhang, J. Zhu, Y.J. Yan, Determination of the natural frequency of a cantilevered ZnO nanowire resonantly excited by a sinusoidal electric field, Nanotechnology 18 (2007) 075709. https://doi.org/10.1088/0957-4484/18/7/075709
  23. C.Q. Chen, Y. Shi, Y.S. Zhang, J. Zhu, Y.J. Yan, Size dependence of Young's modulus in ZnO nanowires, Phys. Rev. Lett. 96 (2006) 075505. https://doi.org/10.1103/PhysRevLett.96.075505
  24. R. He, D. Gao, R. Fan, A.I. Hochbaum, C. Carraro, R. Maboudian, P. Yang, Si nanowire bridges in microtrenches: Integration of growth into device fabrication, Adv. Mater. 17 (2005) 2098. https://doi.org/10.1002/adma.200401959
  25. R.R. He, P.D. Yang, Giant piezoresistance effect in silicon nanowires, Nat. Nanotechnol. 1 (2006) 42. https://doi.org/10.1038/nnano.2006.53
  26. J.F. Conley Jr., L. Stecker, Y. Ono, Directed integration of ZnO nanobridge devices on a Si substrate, Appl. Phys. Lett. 87 (2005) 223114. https://doi.org/10.1063/1.2136218
  27. J.S. Lee, M.S. Islam, S. Kim, Direct formation of catalyst-free ZnO nanobridge devices on an etched Si substrate using a thermal evaporation method, NanoLett. 6 (2006) 1487. https://doi.org/10.1021/nl060883d
  28. T.J. Hsueh, C.L. Hsu, S.J. Chang, I.C. Chen, Laterally grown ZnO nanowire ethanol gas sensors, Sens. Actuators B 126 (2007) 473. https://doi.org/10.1016/j.snb.2007.03.034
  29. J.C. Lavalley, J. Saussey, J. Lamotte, R. Breault, J.P. Hindermann, A. Kiennemann, Infrared study of carbon monoxide hydrogenation over rhodium/ceria and rhodium/silica catalysts, J. Phys. Chem. 94 (1990) 5941. https://doi.org/10.1021/j100378a061
  30. A.B. Boffa, C. Lin, A.T. Bell, G.A. Somorjai, Lewis acidity as an explanation for oxide promotion of metals: Implications of its importance and limits for catalytic reactions, Catal. Lett. 27 (1994) 243. https://doi.org/10.1007/BF00813909
  31. A.Y. Stakheev, L.M. Kustov, Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s, Appl. Catal. A 188 (1999) 3. https://doi.org/10.1016/S0926-860X(99)00232-X
  32. C. Castellarin-Cudia, S. Surnev, G. Schneider, R. Podlucky, M.G. Ramsey, F.P. Netzer, Strain-induced formation of arrays of catalytically active sites at the metaleoxide interface, Surf. Sci. 554 (2004) L120-L126. https://doi.org/10.1016/j.susc.2004.01.059
  33. D.O. Klenov, M. Donner, B. Foran, S. Stemmer, Impact of stress on oxygen vacancy ordering in epitaxial (La0.5Sr0.5)CoO3-${\partial}$ thin films, Appl. Phys. Lett. 82 (2003) 3427. https://doi.org/10.1063/1.1575503
  34. D.J. Shu, S.T. Ge, M. Wang, N.B. Ming, Interplay between external strain and oxygen vacancies on a rutile $TiO_2$(110) surface, Phys. Rev. Lett. 101 (2008) 116102. https://doi.org/10.1103/PhysRevLett.101.116102
  35. D. Srivastava, D.W. Brenner, J.D. Schall, K.D. Ausman, M. Yu, R.S. Ruoff, Predictions of enhanced chemical reactivity at regions of local conformational strain on carbon nanotubes: kinky chemistry, J. Phys. Chem. B 103 (1999) 4330-4337. https://doi.org/10.1021/jp990882s
  36. A. Kushima, S. Yip, B. Yildiz, Competing strain effects in reactivity of $LaCoO_3$ with oxygen, Phys. Rev. B 82 (2010) 115435. https://doi.org/10.1103/PhysRevB.82.115435
  37. G.Y. Chen, T. Thundat, E.A. Wachter, R.J. Warmack, Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers, J. Appl. Phys. 77 (8) (1995) 15.
  38. Z. Ji-Qiao, F. Xi-Qiao, H. Gan-Yun, Y. Shou-Wen, Chemisorption-induced resonance frequency shift of a microcantilever, Chin. Phys. Lett. 29 (5) (2012) 056801. https://doi.org/10.1088/0256-307X/29/5/056801
  39. Ji-Qiao Zhang, Shou-Wen Yu, Xi-Qiao Feng, Theoretical analysis of resonance frequency change induced by adsorption, J. Phys. D: Appl. Phys. 41 (2008) 125306. https://doi.org/10.1088/0022-3727/41/12/125306

Cited by

  1. Transparent ZnO thin film deposition by a compact planar magnetron plasma device vol.53, pp.5, 2014, https://doi.org/10.7567/jjap.53.05fu02
  2. Al-Zn 혼합물을 용융 산화시켜 생성되는 ZnO 나노선의 성장에 미치는 산소압력의 영향 vol.24, pp.6, 2014, https://doi.org/10.3740/mrsk.2014.24.6.301
  3. Degradation enhancement of methylene blue on ZnO nanocombs synthesized by thermal evaporation technique vol.57, pp.54, 2014, https://doi.org/10.1080/19443994.2016.1163511
  4. Enhanced Gas Sensitivity and Selectivity on Aperture-Controllable 3D Interconnected Macro–Mesoporous ZnO Nanostructures vol.8, pp.13, 2014, https://doi.org/10.1021/acsami.5b12315
  5. Effects of lithium doping on: microstructure, morphology, nanomechanical properties and corrosion behaviour of ZnO thin films grown by spray pyrolysis technique vol.30, pp.2, 2014, https://doi.org/10.1007/s10854-018-0449-3
  6. Inexpensive and quick photocatalytic activity of rare earth (Er, Yb) co-doped ZnO nanoparticles for degradation of methyl orange dye vol.227, pp.None, 2014, https://doi.org/10.1016/j.seppur.2019.115726