DOI QR코드

DOI QR Code

Dielectric, ferroelectric and field-induced strain response of lead-free $BaZrO_3$-modified $Bi_{0.5}Na_{0.5}TiO_3$ ceramics

  • Rahman, Jamil Ur (School of Advanced Material Engineering, Changwon National University) ;
  • Hussain, Ali (School of Advanced Material Engineering, Changwon National University) ;
  • Maqbool, Adnan (School of Advanced Material Engineering, Changwon National University) ;
  • Song, Tae Kwonm (School of Advanced Material Engineering, Changwon National University) ;
  • Kim, Won Jeong (Department of Physics, Changwon National University) ;
  • Kim, Sang Su (Department of Physics, Changwon National University) ;
  • Kim, Myong Ho (School of Advanced Material Engineering, Changwon National University)
  • Received : 2013.06.16
  • Accepted : 2013.12.15
  • Published : 2014.03.31

Abstract

Lead-free piezoelectric ceramics (1 - x)$Bi_{0.5}Na_{0.5}TiO_3-xBaZrO_3$ (BNT-BZ100x, with x % 0-0.10) were prepared using a conventional solid-state reaction method. The crystal structure, microstructure, dielectric, ferroelectric, and piezoelectric properties of BNTeBZ100x ceramics were studied as functions of different BZ content. X-ray diffraction patterns revealed that the BZ completely diffused in the BNT lattice in the studied composition range. An appropriate amount of BZ addition improved the dielectric, ferroelectric, and piezoelectric properties of BNT ceramics. The remanent polarization (Pr) and piezoelectric constant ($d_{33}$) increased from $22{\mu}C/cm^2$ and 60 pC/N for pure BNT to $30{\mu}C/cm^2$ and 112 pC/N for x % 0.040, respectively. In addition, electric field-induced strain was enhanced to its maximum value ($S_{max}$ % 0.40%) with normalized strain ($d^*{_{33}}$ % $S_{max}/E_{max}$ % 500 pm/V) at an applied electric field of 8 kV/mm for x % 0.055. The enhanced strain can be attributed to the coexistence of ferroelectric and relaxor ferroelectric phases.

Keywords

References

  1. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics, Academic Press, London, 1971.
  2. N. Ichinose, N. Miyamoto, S. Takahashi, J. Eur. Ceram. Soc. 24 (2004) 1681-1685. https://doi.org/10.1016/S0955-2219(03)00599-5
  3. J.F. Tressler, S. Alkoy, R.E. Newnham, J. Electroceram. 2 (1998) 257-272. https://doi.org/10.1023/A:1009926623551
  4. E. Cross, Nature 432 (2004) 24-25. https://doi.org/10.1038/nature03142
  5. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432 (2004) 84-87. https://doi.org/10.1038/nature03028
  6. J. Rodel, W. Jo, K.T. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92 (2009) 1153-1177. https://doi.org/10.1111/j.1551-2916.2009.03061.x
  7. S. Zhang, R. Xia, T.R. Shrout, J. Electroceram. 19 (2007) 251-257. https://doi.org/10.1007/s10832-007-9056-z
  8. J. Wu, Y. Wang, D. Xiao, J. Zhu, Z. Pu, Appl. Phys. Lett. 91 (2007) 132914. https://doi.org/10.1063/1.2793507
  9. W. Liu, X. Ren, Phys. Rev. Lett. 103 (2009) 257602. https://doi.org/10.1103/PhysRevLett.103.257602
  10. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, Sov. Phys. Solid State 2 (1961) 2651-2654.
  11. J.A. Zvirgzds, P. Kapostis, J. Zvirgzde, Ferroelectrics, vol. 40, Taylor & Francis, 1982.
  12. T. Takenaka, K.I. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30 (1991) 2236-2239. https://doi.org/10.1143/JJAP.30.2236
  13. Y. Bai, G.-P. Zheng, S.-Q. Shi, Mater. Res. Bull. 46 (2011) 1866-1869. https://doi.org/10.1016/j.materresbull.2011.07.038
  14. B.-J. Chu, D.-R. Chen, G.-R. Li, Q.-R. Yin, J. Eur. Ceram. Soc. 22 (2002) 2115-2122. https://doi.org/10.1016/S0955-2219(02)00027-4
  15. R. Ranjan, A. Dviwedi, Solid State Commun. 135 (2005) 394-399. https://doi.org/10.1016/j.ssc.2005.03.053
  16. X. Zhou, H. Gu, Y. Wang, W. Li, T. Zhou, Mater. Lett. 59 (2005) 1649-1652. https://doi.org/10.1016/j.matlet.2005.01.034
  17. C. Xu, D. Lin, K.W. Kwok, Solid State Sci. 10 (2008) 934-940. https://doi.org/10.1016/j.solidstatesciences.2007.11.003
  18. W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.-J. Kleebe, A.J. Bell, J. Rodel, J. Appl. Phys. 110 (2011) 074106. https://doi.org/10.1063/1.3645054
  19. Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, T.G. Park, Appl. Phys. Lett. 96 (2010) 202901. https://doi.org/10.1063/1.3428580
  20. S.-T. Zhang, A.B. Kounga, E. Aulbach, Y. Deng, J. Am. Ceram. Soc. 91 (2008) 3950-3954. https://doi.org/10.1111/j.1551-2916.2008.02778.x
  21. Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, T. Takenaka, Appl. Phys. Lett. 92 (2008) 262904. https://doi.org/10.1063/1.2955533
  22. W. Krauss, D. Schutz, F.A. Mautner, A. Feteira, K. Reichmann, J. Eur. Ceram. Soc. 30 (2010) 1827-1832. https://doi.org/10.1016/j.jeurceramsoc.2010.02.001
  23. K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 45 (2006) 4493-4496. https://doi.org/10.1143/JJAP.45.4493
  24. A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Jpn. J. Appl. Phys. 38 (1999) 5564. https://doi.org/10.1143/JJAP.38.5564
  25. Y. Li, W. Chen, J. Zhou, Q. Xu, H. Sun, R. Xu, Mater. Sci. Eng. B 112 (2004) 5-9. https://doi.org/10.1016/j.mseb.2004.04.019
  26. Y. Hiruma, H. Nagata, T. Takenaka, J. Appl. Phys. 104 (2008) 124106-124113. https://doi.org/10.1063/1.3043588
  27. A.B. Kounga, S.-T. Zhang, W. Jo, T. Granzow, J. Rodel, Appl. Phys. Lett. 92 (2008) 222902-222903. https://doi.org/10.1063/1.2938064
  28. W. Bai, Y. Bian, J. Hao, B. Shen, J. Zhai, S. Zhang, J. Am. Ceram. Soc. 96 (2013) 246-252. https://doi.org/10.1111/jace.12039
  29. W.-C. Lee, Y.-F. Lee, M.-H. Tseng, C.-Y. Huang, Y.-C. Wu, J. Am. Ceram. Soc. 92 (2009) 1069-1073. https://doi.org/10.1111/j.1551-2916.2009.03034.x
  30. C. Peng, J.-F. Li, W. Gong, Mater. Lett. 59 (2005) 1576-1580. https://doi.org/10.1016/j.matlet.2005.01.026
  31. Y.-Q. Yao, T.-Y. Tseng, C.-C. Chou, H.H.D. Chen, J. Appl. Phys. 102 (2007) 094102. https://doi.org/10.1063/1.2803725
  32. J. Glaum, H. Simons, M. Acosta, M. Hoffman, A. Feteira, J. Am. Ceram. Soc. (2013).
  33. R.D. Shannon, C.T. Prewitt, Acta Crystallogr. 25 (1969) 925-946. https://doi.org/10.1107/S0567740869003220
  34. W.-C. Lee, C.-Y. Huang, L.-K. Tsao, Y.-C.Wu, J. Alloys Compd. 492 (2010) 307-312. https://doi.org/10.1016/j.jallcom.2009.11.083
  35. A. Rachakom, P. Jaiban, S. Jiansirisomboon, A. Watcharapasorn, Nanoscale Res. Lett. 7 (2012) 57. https://doi.org/10.1186/1556-276X-7-57
  36. N.K. Karan, R.S. Katiyar, T. Maiti, R. Guo, A.S. Bhalla, J. Raman Spectrosc. 40 (2009) 370-375. https://doi.org/10.1002/jrs.2134
  37. M.J. Haun, E. Furman, S.J. Jang, L.E. Cross, Ferroelectrics 99 (1989) 13-25. https://doi.org/10.1080/00150198908221436
  38. Y. Hiruma, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 48 (2009), 09KC08.

Cited by

  1. Effect of SrZrO3 substitution on structural and electrical properties of lead‐free Bi0.5Na0.5TiO3–BaTiO3 ceramics vol.211, pp.8, 2014, https://doi.org/10.1002/pssa.201330564
  2. Ferroelectric and impedance response of lead-free (B0.5N0.5) TiO3-BaZrO3piezoelectric ceramics vol.60, pp.None, 2014, https://doi.org/10.1088/1757-899x/60/1/012043
  3. Structure and temperature dependent electrical properties of lead-free Bi0.5Na0.5TiO3- SrZrO3ceramics vol.60, pp.None, 2014, https://doi.org/10.1088/1757-899x/60/1/012047
  4. Effect of sintering temperature on the electromechanical properties of 0.945Bi0.5Na0.5TiO3-0.055BaZrO3 ceramics vol.66, pp.7, 2014, https://doi.org/10.3938/jkps.66.1072
  5. Piezoelectric and ferroelectric properties of lead-free LiNbO3-modified 0.97(Bi0.5Na0.5TiO3)-0.03BaZrO3 ceramics vol.66, pp.4, 2014, https://doi.org/10.3938/jkps.66.661
  6. Effect of donor doping on the ferroelectric and the piezoelectric properties of lead-free 0.97(Bi0.5Na0.5Ti1−x Nb x )O3-0.03BaZrO3 ceramics vol.67, pp.7, 2014, https://doi.org/10.3938/jkps.67.1240
  7. Dielectric and Ferroelectric Properties of Nb Doped BNT-Based Relaxor Ferroelectrics vol.25, pp.7, 2014, https://doi.org/10.3740/mrsk.2015.25.7.317
  8. Composition-dependent structural, dielectric and ferroelectric responses of lead-free Bi0.5Na0.5TiO3-SrZrO3 ceramics vol.68, pp.12, 2014, https://doi.org/10.3938/jkps.68.1430
  9. Structural and electromechanical properties of Na0.5Bi0.5TiO3ceramics produced by different synthesis routes vol.146, pp.None, 2016, https://doi.org/10.1088/1757-899x/146/1/012006
  10. Structural and electrical properties of Bi1/2Na1/2TiO3–BaTiO3–Sr3CuNb2O9 lead-free piezoelectric ceramics vol.28, pp.1, 2014, https://doi.org/10.1007/s10854-016-5493-2
  11. Improved piezoelectricity and high strain response of (1 − x)(0.948K0.5Na0.5NbO3 − 0.052LiSbO3) − xBi2O3 ceramics vol.28, pp.2, 2017, https://doi.org/10.1007/s10854-016-5647-2
  12. Electrical and mechanical properties of bismuth sodium potassium titanate doped with a modified barium titanate lead-free ceramics vol.552, pp.1, 2014, https://doi.org/10.1080/00150193.2019.1653079
  13. Physical properties and sinterability of pure and iron-doped bismuth sodium titanate ceramics vol.56, pp.4, 2014, https://doi.org/10.1007/s41779-020-00461-5
  14. Comparing the electromechanical properties of CaTiO3‐ and BaZrO3‐modified Bi0.5Na0.5TiO3-SrTiO3 ceramics vol.36, pp.5, 2014, https://doi.org/10.1557/s43578-020-00080-7
  15. Experimental and theoretical studies on induced ferromagnetism of new (1 − x)Na0.5Bi0.5TiO3 + xBaFeO3−δ solid solution vol.11, pp.1, 2014, https://doi.org/10.1038/s41598-021-88377-3