DOI QR코드

DOI QR Code

A novel technique for scaffold fabrication: SLUP (salt leaching using powder)

  • Cho, Yong Sang (Division of Mechanical and Automotive Engineering, College of Engineering, Wonkwang University) ;
  • Kim, Beom-Su (Wonkwang Bone Regeneration Research Institute, Wonkwang University) ;
  • You, Hyung-Keun (Department of Periodontology, School of Dentistry, Wonkwang University) ;
  • Cho, Young-Sam (Division of Mechanical and Automotive Engineering, College of Engineering, Wonkwang University)
  • Received : 2013.09.17
  • Accepted : 2013.12.16
  • Published : 2014.03.31

Abstract

In this study, we proposed a novel salt-leaching method using PCL and NaCl powders, known as the SLUP (salt leaching using powder) technique, which has several advantages: this technique does not require solvent, pressure, or unnecessary expensive devices. First, PCL powder ($100-180{\mu}m$ size) and NaCl powder ($350-400{\mu}m$ size) were prepared. Second, the PCL and NaCl powders were mixed at a certain ratio, and then the mixed powder was poured into a mold. Afterward, the mold was heated to melt the PCL powder in an oven at $80^{\circ}C$ for 15 min. Subsequently, after the PCL/NaCl mixture was separated from the mold, the PCL/NaCl mixture was soaked in D.I. water for 24 h to leach out the NaCl particles. Consequently, the remaining PCL structure was porous and could be used as a scaffold. To analyze the compressive modulus of the fabricated scaffold, a uniaxial compression test was performed using a UTM (universal testing machine), and the surface characteristics of the scaffold were observed using an SEM (scanning electron microscope). Additionally, cell-culture experiments were performed using hMSCs (human mesenchymal stem cells), and the cell-culture characteristics were assessed and compared with the characteristics from a conventional salt-leaching scaffold.

Keywords

References

  1. W.L. Murphy, R.G. Dennis, J.L. Kileny, D.J. Mooney, Tissue Eng. Part B Rev. 8 (2002) 43.
  2. E. Sachlos, J.T. Czemyszka, Eur. Cells Mater. 5 (2003) 29.
  3. V. Karageorgiou, D. Kaplan, Biomaterials 26 (2005) 5474. https://doi.org/10.1016/j.biomaterials.2005.02.002
  4. K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biomaterials 27 (2006) 3413. https://doi.org/10.1016/j.biomaterials.2006.01.039
  5. Y.S. Nam, J.J. Yoon, T.G. Park, J. Biomed. Mater. Res. Part A 53 (2000) 1. https://doi.org/10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R
  6. Q. Hou, D.W. Grijpma, J. Feijen, Biomaterials 24 (2003) 1937. https://doi.org/10.1016/S0142-9612(02)00562-8
  7. S.H. Oh, S.G. Kang, E.S. Kim, S.H. Cho, J.H. Lee, Biomaterials 24 (2003) 4011. https://doi.org/10.1016/S0142-9612(03)00284-9
  8. A.G. Mikos, A.J. Thorsen, L.A. Czerwonka, Y. Bao, R. Langer, Polymer 35 (1994) 1068. https://doi.org/10.1016/0032-3861(94)90953-9
  9. H. Lo, M.S. Ponticiello, K.W. Leong, Tissue Eng. 1 (1995) 15. https://doi.org/10.1089/ten.1995.1.15
  10. D.J. Mooney, D.F. Baldwin, N.P. Suh, J.P. Vacanti, R. Langer, Biomaterials 17 (1996) 1417. https://doi.org/10.1016/0142-9612(96)87284-X
  11. K.F. Leong, C.M. Cheah, C.K. Chua, Biomaterials 24 (2003) 2363. https://doi.org/10.1016/S0142-9612(03)00030-9
  12. K. Whang, H. Thomas, K.E. Healy, Polymer 36 (1995) 837. https://doi.org/10.1016/0032-3861(95)93115-3
  13. J.S. Mao, L.G. Zhao, Y.J. Yin, K.D. Yao, Biomaterials 24 (2003) 1067. https://doi.org/10.1016/S0142-9612(02)00442-8
  14. X. Liu, P.X. Ma, Ann. Biomed. Eng. 32 (2004) 477. https://doi.org/10.1023/B:ABME.0000017544.36001.8e
  15. M.H. Ho, P.Y. Kuo, H.J. Hsieh, T.Y. Hsien, L.T. Hou, J.Y. Lai, D.M. Wang, Biomaterials 25 (2004) 129. https://doi.org/10.1016/S0142-9612(03)00483-6
  16. S.B. Lee, Y.H. Kim, M.S. Chong, S.H. Hong, Y.M. Lee, Biomaterials 26 (2005) 1961. https://doi.org/10.1016/j.biomaterials.2004.06.032
  17. S.J. Hollister, Nat. Mater. 4 (2005) 518. https://doi.org/10.1038/nmat1421
  18. F.P.W. Melchels, A.M.C. Barradas, C.A.V. Blitterswijk, J.D. Boer, J. Feijen, D.W. Grijpma, Acta Biomater. 6 (2010) 4208. https://doi.org/10.1016/j.actbio.2010.06.012
  19. J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, Biomaterials 26 (2005) 4817. https://doi.org/10.1016/j.biomaterials.2004.11.057
  20. H. Seitz, W. Rieder, S. Irsen, B. Leukers, C. Tille, J. Biomed. Mater. Res. Part B 74B (2005) 782. https://doi.org/10.1002/jbm.b.30291
  21. K.H. Lee, G.H. Jin, C.H. Jang, W.K. Jung, G.H. Kim, J. Mater. Chem. B 1 (2013) 5831.
  22. Y.B. Kim, G.H. Kim, J. Mater. Chem. B 1 (2013) 3185. https://doi.org/10.1039/c3tb20485e
  23. H.J. Jeon, G.H. Kim, Curr. Appl. Phys. 13 (2013) 1914. https://doi.org/10.1016/j.cap.2013.08.009
  24. J.E. Frith, B. Thomson, P.G. Genever, Tissue Eng. Part C 16 (2010) 735.
  25. D.C. Sin, X. Miao, G. Liu, F. Wei, G. Chadwick, C. Yan, T. Friis, Mat. Sci. Eng. C 30 (2010) 78. https://doi.org/10.1016/j.msec.2009.09.002
  26. H. Li, J. Chang, Biomaterials 25 (2004) 5473. https://doi.org/10.1016/j.biomaterials.2003.12.052
  27. N.D. Luong, I.S. Moon, J.D. Nam, Macromol. Mater. Eng. 294 (2009) 699. https://doi.org/10.1002/mame.200900204
  28. J. Sun, J. Wu, H. Li, J. Chang, Eur. Polym. J. 41 (2005) 2443. https://doi.org/10.1016/j.eurpolymj.2005.04.039
  29. S.H. Oh, S.G. Kang, J.H. Lee, J. Mater. Sci. 17 (2006) 131.
  30. B.S. Kim, J.S. Kim, Y.M. Park, B.Y. Choi, J.M. Lee, Mat. Sci. Eng. C. 33 (2013) 1554. https://doi.org/10.1016/j.msec.2012.12.061
  31. A. Ovsianikov, A. Deiwick, S.V. Vlierberghe, M. Pflaum, M. Wilhelmi, P. Dubruel, B. Chichkov, Materials 4 (2011) 288. https://doi.org/10.3390/ma4010288

Cited by

  1. Assessment of cell proliferation in knitting scaffolds with respect to pore‐size heterogeneity, surface wettability, and surface roughness vol.132, pp.38, 2015, https://doi.org/10.1002/app.42566
  2. 열 용해 적층법과 염 침출법을 이용한 3 차원 이중 공 인공지지체 제작에 관한 연구 vol.39, pp.12, 2014, https://doi.org/10.3795/ksme-a.2015.39.12.1229
  3. Microstructural characterization of random packings of cubic particles vol.6, pp.None, 2016, https://doi.org/10.1038/srep35024
  4. Bioresorbable Fe-Mn and Fe-Mn-HA Materials for Orthopedic Implantation: Enhancing Degradation through Porosity Control vol.6, pp.13, 2014, https://doi.org/10.1002/adhm.201700120
  5. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering vol.28, pp.16, 2014, https://doi.org/10.1080/09205063.2017.1354674
  6. Mechanical properties and cell-culture characteristics of a polycaprolactone kagome-structure scaffold fabricated by a precision extruding deposition system vol.12, pp.5, 2014, https://doi.org/10.1088/1748-605x/aa8357
  7. In vivo safety and efficacy of sericin/poly(vinyl alcohol)/glycerin scaffolds fabricated by freeze-drying and salt-leaching techniques for wound dressing applications vol.32, pp.6, 2014, https://doi.org/10.1177/0883911517694398
  8. Assessments for bone regeneration using the polycaprolactone SLUP (salt‐leaching using powder) scaffold vol.105, pp.12, 2014, https://doi.org/10.1002/jbm.a.36196
  9. Characterization of Gelatin/CMC Scaffold Fabricated by Using Salt Leaching Technique vol.962, pp.None, 2014, https://doi.org/10.4028/www.scientific.net/msf.962.129
  10. Bioreactor mimicking knee-joint movement for the regeneration of tissue-engineered cartilage vol.33, pp.4, 2014, https://doi.org/10.1007/s12206-019-0336-8
  11. Repurposing biodegradable tissue engineering scaffolds for localized chemotherapeutic delivery vol.108, pp.5, 2020, https://doi.org/10.1002/jbm.a.36889
  12. Poly(ester amide)-Bioactive Glass Hybrid Biomaterials for Bone Regeneration and Biomolecule Delivery vol.3, pp.6, 2020, https://doi.org/10.1021/acsabm.0c00257
  13. Biocompatible Electrospun Polycaprolactone-Polyaniline Scaffold Treated with Atmospheric Plasma to Improve Hydrophilicity vol.8, pp.2, 2014, https://doi.org/10.3390/bioengineering8020024
  14. Advantages of Additive Manufacturing for Biomedical Applications of Polyhydroxyalkanoates vol.8, pp.2, 2014, https://doi.org/10.3390/bioengineering8020029