DOI QR코드

DOI QR Code

Effect of Nb doping on morphology, crystal structure, optical band gap energy of $TiO_2$ thin films

  • Lee, Deuk Yong (Department of Biomedical Engineering, Daelim University) ;
  • Park, Ju-Hyun (Department of Materials Engineering, Daelim University) ;
  • Kim, Young-Hun (Department of Materials Engineering, Korea Aerospace University) ;
  • Lee, Myung-Hyun (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Nam-Ihn (Department of Electronic Engineering, Sun Moon University)
  • Received : 2013.08.21
  • Accepted : 2013.12.26
  • Published : 2014.03.31

Abstract

$Nb-TiO_2$ nanofibers and thin films were prepared using a sol-gel derived electrospinning and spin coating, respectively, by varying the Nb/Ti molar ratios from 0 to 0.59 to investigate the effect of Nb doping on morphology, crystal structure, and optical band gap energy of $Nb-TiO_2$. XRD results indicated that $Nb-TiO_2$ is composed of anatase and rutile phases as a function of Nb/Ti molar ratio. As the Nb/Ti molar ratio rose, the anatase to rutile phase transformation and the reduction in crystallite size occurred. The band gap energy of $Nb-TiO_2$ was changed from 3.25 eV to 2.87 eV when the anatase phase was transformed to rutile phase with increasing the Nb doping. Experimental results indicated that the Nb doping was mainly attributed to the morphology, the crystal structure, the optical band gap energy of $Nb-TiO_2$, and the photocatalytic degradation of methylene blue.

Keywords

References

  1. Y. Choi, S. Kim, Y. Song, D.Y. Lee, J. Mater. Sci. 39 (2004) 5695. https://doi.org/10.1023/B:JMSC.0000040078.09843.cb
  2. C. Liang, M. Hou, S. Zhou, F. Li, C. Liu, T. Liu, Y. Gao, X. Wang, J. Lu, J. Hazard. Mater. B 138 (2006) 471. https://doi.org/10.1016/j.jhazmat.2006.05.066
  3. K.M. Parida, N. Sahu, J. Mol. Catal. A: Chem. 287 (2008) 151. https://doi.org/10.1016/j.molcata.2008.02.028
  4. K.T. Ranjit, I. Willner, S.H. Bossmann, A.M. Braun, Environ. Sci. Technol. 35 (2001) 1544. https://doi.org/10.1021/es001613e
  5. M. Muruganandham, M. Swaminathan, Dyes Pigm. 68 (2006) 133. https://doi.org/10.1016/j.dyepig.2005.01.004
  6. A.L. Linsebiger, G.Q. Lu Jr., J.T. Yates, Chem. Rev. 95 (1995) 735. https://doi.org/10.1021/cr00035a013
  7. A. Nakaruk, D. Ragazzon, C.C. Sorrell, Thin Solid Films 518 (2010) 3735. https://doi.org/10.1016/j.tsf.2009.10.109
  8. D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci. 46 (2011) 855. https://doi.org/10.1007/s10853-010-5113-0
  9. L. Jing, B. Xin, F. Yuan, L. Xue, B. Wang, H. Fu, J. Phys. Chem. B 110 (2006) 17860. https://doi.org/10.1021/jp063148z
  10. C.Y.W. Lin, A. Nakaruk, C.C. Sorrell, Prog. Org. Coat. 74 (1985) 143.
  11. H. An, H. Ahn, Mater. Lett. 93 (2013) 88. https://doi.org/10.1016/j.matlet.2012.11.066
  12. R. Subasri, M. Tripathi, K. Murugan, J. Revathi, G.V.N. Rao, T.N. Rao, Mater. Chem. Phys. 124 (2010) 63. https://doi.org/10.1016/j.matchemphys.2010.08.013
  13. L.E. Depero, L. Sangaletti, B. Allieri, E. Bontempi, R. Salari, M. Zocchi, C. Casale, M. Notaro, J. Mater. Res. 13 (1998) 1644. https://doi.org/10.1557/JMR.1998.0226
  14. D.Y. Lee, J. Kim, J. Park, Y. Kim, I. Lee, M. Lee, B. Kim, Curr. Appl. Phys. 13 (2013) 1301. https://doi.org/10.1016/j.cap.2013.03.025
  15. D.Y. Lee, N. Cho, Phys. Stat. Sol. C 9 (2012) 1423. https://doi.org/10.1002/pssc.201100221
  16. M. Wang, B. Gong, X. Yao, Y. Wang, R.N. Lamb, Thin Solid Films 515 (2006) 2055. https://doi.org/10.1016/j.tsf.2006.05.018
  17. J. Yang, X. Zhang, C. Wang, P. Sun, L. Wang, B. Xia, Y. Liu, Solid State Sci. 14 (2012) 139. https://doi.org/10.1016/j.solidstatesciences.2011.11.010
  18. A.L. Castro, M.R. Nunes, M.D. Carvalho, L.P. Ferreira, J.C. Jumas, F.M. Costa, M.H. Florenceio, J. Solid State Chem. 182 (2009) 1838. https://doi.org/10.1016/j.jssc.2009.04.020
  19. J. Tauc, A. Menth, J. Non-Cryst. Solids 8-10 (1972) 569. https://doi.org/10.1016/0022-3093(72)90194-9
  20. C.L. Pai, M.C. Boyce, G.C. Rutledge, Macromolecules 42 (2009) 2102. https://doi.org/10.1021/ma802529h
  21. D. Mardare, M. Tasca, M. Delibas, G.I. Rusu, Appl. Surf. Sci. 156 (2000) 200. https://doi.org/10.1016/S0169-4332(99)00508-5
  22. M. Sreemany, S. Sen, Mater. Res. Bull. 42 (2007) 177. https://doi.org/10.1016/j.materresbull.2006.04.033
  23. G.Q. Wang, W. Lan, G.J. Han, Y. Wang, Q. Su, X.Q. Liu, J. Alloys Compd. 509 (2011) 4150. https://doi.org/10.1016/j.jallcom.2011.01.021
  24. A.K. Chandiran, F. Sauvage, M. Casa-Cabans, P. Comte, S.M. Zakeeruddin, M. Graetzel, J. Phys. Chem. C. 114 (2010) 15849. https://doi.org/10.1021/jp106058c

Cited by

  1. 다공성 폴리(ε-카프로락톤)/실리카 복합체의 제조 및 특성평가 vol.39, pp.2, 2014, https://doi.org/10.7317/pk.2015.39.2.323
  2. Synthesis and Properties of Nd-doped TiO2thin films by sol-gel dip-coating method vol.63, pp.None, 2014, https://doi.org/10.1051/matecconf/20166303021
  3. The microstructure, mechanical and electrical properties of Niobium pentoxide-doped Titanium oxide ceramic targets vol.182, pp.None, 2014, https://doi.org/10.1088/1757-899x/182/1/012005
  4. Photochemical quenching of aqueous methylene blue by N, Nb co-doped TiO2nanomaterials under visible light: a confirmatory UV/LC-MS study vol.4, pp.12, 2014, https://doi.org/10.1088/2053-1591/aa9cf7
  5. Synthesis and Characterization of Electrospun PU/PCL Hybrid Scaffolds vol.26, pp.1, 2014, https://doi.org/10.1007/s13233-018-6005-4
  6. Photocatalytic Activity of Al-TiO2 Nanomaterials for the Degradation of Methylene Blue Dye vol.72, pp.3, 2018, https://doi.org/10.3938/jkps.72.412
  7. The Role of Nb Addition in TiO2 Nanoparticles: Phase Transition and Photocatalytic Properties vol.215, pp.21, 2014, https://doi.org/10.1002/pssa.201800321
  8. Influence of calcination on the morphology and crystallinity of titanium dioxide nanofibers towards enhancing photocatalytic dye degradation vol.6, pp.2, 2014, https://doi.org/10.1088/2053-1591/aaf013
  9. Preparation of Al-TiO2 nanotubes and their photocatalytic activities vol.42, pp.3, 2014, https://doi.org/10.1007/s10832-018-0159-5
  10. Optimal Electrospun TiO 2 Nanofiber Photocatalytic Performance via Synergistic Morphology and Particle Crystallinity with Anatase/Rutile Phase Tuning vol.216, pp.16, 2019, https://doi.org/10.1002/pssa.201900066
  11. Enhanced electronic transport in Y-doped TiO2 branched nanorod array thin film electrodes vol.6, pp.11, 2014, https://doi.org/10.1088/2053-1591/ab503f
  12. Effect of the Niobium Doping Concentration on the Charge Storage Mechanism of Mesoporous Anatase Beads as an Anode for High-Rate Li-Ion Batteries vol.4, pp.1, 2014, https://doi.org/10.1021/acsaem.0c02157
  13. Enhanced photocatalytic activity of Ce-doped β-Ga2O3 nanofiber fabricated by electrospinning method vol.32, pp.3, 2014, https://doi.org/10.1007/s10854-020-05087-8
  14. A Review on Metal Ions Modified TiO2 for Photocatalytic Degradation of Organic Pollutants vol.11, pp.9, 2021, https://doi.org/10.3390/catal11091039