DOI QR코드

DOI QR Code

Selective ethanol gas sensing behavior of mesoporous n-type semiconducting $FeNbO_4$ nanopowder obtained by niobium-citrate process

  • Balamurugan, C. (MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University) ;
  • Maheswari, A.R. (PG and Research Department of Chemistry, J.J. College of Arts and Science) ;
  • Lee, D.W. (MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University) ;
  • Subramania, A. (Centre for Nanoscience and Technology, Pondicherry University)
  • Received : 2013.08.27
  • Accepted : 2013.11.30
  • Published : 2014.03.31

Abstract

Beyond the most investigated mesoporous silica and carbon based materials, metal oxides have attracted considerable interest due to their more diverse electronic functionality, which includes gas sensing activities, semiconductor characteristics and magnetic properties. In this paper, we describe the fabrication, characterization and application of mesoporous $FeNbO_4$ nanopowder for ethanol gas sensing application. $FeNbO_4$ nanopowder was synthesized via the niobium-citrate complex method, without using any surfactant and size selection medium. Thermal stability and structure of the nanopowder was analyzed by thermogravimetric analysis (TG/DTA) and X-ray diffraction analysis (XRD). Structural analysis confirmed the formation of $FeNbO_4$ with monoclinic structure. The particle size, electrical and optical properties were also systemically investigated by means of transmission electron microscopy (TEM), impedance and diffused reflectance spectra. Nitrogen adsorption isotherms of the $FeNbO_4$ were type IV with hysteresis loops of type $H_3$ indicating well-defined pore structure with mesoporous nature. The sensing characteristics of $FeNbO_4$ nanopowder such as sensitivity, operating temperature and response time, were studied in the presence of ethanol ($C_2H_5OH$). Experimental result confirmed that a higher response to ethanol at relatively lower operating temperature of $200^{\circ}C$.

Keywords

References

  1. S.K. Biswas, P. Pramanik, Sens. Actuators B 133 (2008) 449. https://doi.org/10.1016/j.snb.2008.03.004
  2. R. Theissmann, H. Ehrenberg, H. Weitzel, H. Fuess, J. Mater. Sci. 37 (2002) 4431. https://doi.org/10.1023/A:1020685426410
  3. R. Theissmann, H. Ehrenberg, H. Weitzel, H. Fuess, Solid State Sci. 7 (2005) 791. https://doi.org/10.1016/j.solidstatesciences.2004.11.027
  4. O. Raymond, R. Font, N. Suarez, J. Portelles, J.M. Siqueiros, Ferroelectrics 294 (2003) 141.
  5. D.H. Dawson, D.E. Williams, J. Mater. Chem. 6 (1996) 409. https://doi.org/10.1039/jm9960600409
  6. G.S. Henshaw, I. Morris, I.J. Gellman, D.E. Williams, J. Mater. Chem. 6 (1996) 1883. https://doi.org/10.1039/jm9960601883
  7. K.I. Gnanasekar, V. Jayaraman, E. Prabhu, T. Gnanasekaran, G. Periaswami, Sens. Actuators B 55 (1999) 170. https://doi.org/10.1016/S0925-4005(99)00051-9
  8. In-Sun Cho, Sangwook Lee, Jun Hong Noh, Geun Kyu Choi, Hyun Suk Jung, Dong Wan Kim, Kug Sun Hong, J. Phys. Chem. C 112 (2008) 18393. https://doi.org/10.1021/jp807006g
  9. M. Faisal, Sher Bahadar Khan, Mohammed M. Rahman, Aslam Jamal, Abdullah M. Asiri, M.M. Abdullah, Chem. Eng. J. 173 (2011) 178. https://doi.org/10.1016/j.cej.2011.07.067
  10. Peiguang Hu, Guojun Du, Weijia Zhou, Jingjie Cui, Jianjian Lin, Hong Liu, Duo Liu, Jiyang Wang, Shaowei Chen, ACS Appl. Mater. Interfaces 2 (2010) 3263. https://doi.org/10.1021/am100707h
  11. Xiaohong Sun, Yifeng Shi, Peng Zhang, Chunming Zheng, Xinyue Zheng, Fan Zhang, Yichi Zhang, Naijia Guan, Dongyuan Zhao, Galen D. Stucky, J. Am. Chem. Soc. 133 (2011) 14542. https://doi.org/10.1021/ja2060512
  12. K. Bhattacharyya, A.K. Tyagi, J. Alloy Compd. 470 (2009) 580. https://doi.org/10.1016/j.jallcom.2008.03.024
  13. http;//goldbook.iupac.org/S05606.html.
  14. S. Roy Morrison, M.J. Madou, Chemical Sensing with Solid State Devices, Academic Press, London, 1989.
  15. Supon Ananta, Rik Brydson, Noel W. Thomas, J. Eur. Ceram. Soc. 19 (1999) 489. https://doi.org/10.1016/S0955-2219(98)00219-2
  16. PCPDFWIN Version 2.4, JCPDS-ICDD, 2003.
  17. G. Alvarez, R. Font, J. Portelles, O. Raymond, R. Zamorano, Solid State Sci. 11 (2009) 881. https://doi.org/10.1016/j.solidstatesciences.2008.11.001
  18. Yang Jiao, Feifei Wang, Xiaoming Ma, Qinghu Tang, Kui Wang, Yuming Guo, Lin Yang, Micropor. Mesopor. Mater. 176 (2013) 1. https://doi.org/10.1016/j.micromeso.2013.03.031
  19. C. Balamurugana, E. Vijayakumar, A. Subramania, Talanta 88 (2012) 115. https://doi.org/10.1016/j.talanta.2011.10.017
  20. Wen Zeng, Bin Miao, Qu Zhou, Liyang Lin, Physica E 47 (2013) 116. https://doi.org/10.1016/j.physe.2012.10.026

Cited by

  1. New Fe-Ta and Co-Ta oxalate complexes: structural characterization and thermal behaviour - formation of mixed-metal oxides vol.4, pp.70, 2014, https://doi.org/10.1039/c4ra05855k
  2. The fabrication of In2O3 nanowire and nanotube by single nozzle electrospinning and their gas sensing property vol.27, pp.5, 2014, https://doi.org/10.1007/s10854-016-4407-7
  3. Mesoporous In2O3 nanocrystals: synthesis, characterization and NOx gas sensor at room temperature vol.40, pp.2, 2014, https://doi.org/10.1039/c5nj02214b
  4. Enhancing Gas Response Characteristics of Mixed Metal Oxide Gas Sensors vol.55, pp.1, 2014, https://doi.org/10.4191/kcers.2018.55.1.10
  5. Polyoxometalate Compound-Derived MoP-Based Electrocatalyst with N-Doped Mesoporous Carbon as Matrix, a Cathode Material for Zn-H+ Battery vol.10, pp.49, 2014, https://doi.org/10.1021/acsami.8b15380
  6. Effects of Hydrogen Treatment and Nb2O5 Nanoparticle Decoration in TiO2Nanorods for Solar Water Oxidation vol.7, pp.4, 2019, https://doi.org/10.1021/acssuschemeng.8b06628
  7. Tunable Raman scattering enhancement due to self-assembled Au nanoparticles layer on porous AAO: The influence of the alumina support vol.536, pp.None, 2014, https://doi.org/10.1016/j.apsusc.2020.147674