DOI QR코드

DOI QR Code

Altered Cultivar Resistance of Kimchi Cabbage Seedlings Mediated by Salicylic Acid, Jasmonic Acid and Ethylene

  • Lee, Young Hee (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Kim, Sang Hee (Division of Plant Sciences, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri) ;
  • Yun, Byung-Wook (Division of Plant Biosciences, School of Applied Biosciences, Kyungpook National University) ;
  • Hong, Jeum Kyu (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
  • Received : 2014.06.10
  • Accepted : 2014.07.24
  • Published : 2014.09.01

Abstract

Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner.

Keywords

References

  1. Alkan, N., Fluhr, R. and Prusky, D. 2012. Ammonium secretion during Colletotrichum coccodes infection modulates salicylic acid and jasmonic acid pathways of ripe and unripe tomato fruit. Mol. Plant-Microbe Interact. 25:85-96. https://doi.org/10.1094/MPMI-01-11-0020
  2. Audenaert, K., De Meyer, G. B. and Hofte, M. M. 2002. Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Phyiol. 128:491-501. https://doi.org/10.1104/pp.010605
  3. Banani, H., Roatti, B., Ezzahi, B., Giovannini, O., Gessler, G., Pertot, I. and Perazzolli, M. 2014. Characterization of resistance mechanisms activated by Trichoderma harzianum T39 and benzothiadiazole to downy mildew in different grape cultivars. Plant Pathol. 63:334-343. https://doi.org/10.1111/ppa.12089
  4. Boatwright, J. L. and Pajerowska-Mukhtar, K. 2013. Salicylic acid: an old hormone up to new tricks. Mol. Plant Pathol. 14:623-634. https://doi.org/10.1111/mpp.12035
  5. Cao, S. and Zheng, Y. 2010. Effect of 1-methylcyclopropane on anthracnose rot caused by Colletotrichum acutatum and disease resistance in loquat fruit. J. Sci. Food Agric. 90:2289-2294. https://doi.org/10.1002/jsfa.4084
  6. Chen, N., Goodwin, P. H. and Hsiang, T. 2003. The role of ethylene during the infection of Nicotiana tabacum by Colletotrichum destructivum. J. Exp. Bot. 54:2449-2456. https://doi.org/10.1093/jxb/erg289
  7. Chen, T., Lv, Y., Zhao, T., Li, N., Yang, Y., Yu, W., He, X., Liu, T. and Zhang, B. 2013. Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS ONE 8:e80816. https://doi.org/10.1371/journal.pone.0080816
  8. Dahal, D., Pich, A., Braun, H. P. and Wydra, K. 2010. Analysis of cell wall proteins regulated in stem of susceptible and resistant tomato species after inoculation with Ralstonia solanacearum: a proteomic approach. Plant Mol. Biol. 73:643-658. https://doi.org/10.1007/s11103-010-9646-z
  9. Derksen, H., Rampitsch, C. and Daayf, F. 2013. Signaling crosstalk in plant disease resistance. Plant Sci. 207:79-87. https://doi.org/10.1016/j.plantsci.2013.03.004
  10. de Torres Zabala, M., Bennett, M. H., Truman, W. H. and Grant, M. R. 2009. Antagonism between salicylic acid and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses. Plant J. 59:375-386. https://doi.org/10.1111/j.1365-313X.2009.03875.x
  11. El Rahman, T. A., El Oirdi, M., Gonzalez-Lamothe, R. and Bouarab, K. 2012. Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato. Mol. Plant-Microbe Interact. 25:1584-1593. https://doi.org/10.1094/MPMI-07-12-0187-R
  12. Fokunang, C. N., Dixon, A. G. O., Ikotun, T., Akem, C. N. and Tembe, E. A. 2002. Rapid screening method of cassava cultivars for resistance to Colletotrichum gloeosporioides f. sp. manihotis. J. Phytopathol. 150:6-12. https://doi.org/10.1046/j.1439-0434.2002.00708.x
  13. Ge, Y., Bi, Y. and Guest, D. I. 2013. Defence responses in leaves of resistant and susceptible melon (Cucumis melo L.) cultivars infected with Colletotrichum lagenarium. Physiol. Mol. Plant Pathol. 81:13-21. https://doi.org/10.1016/j.pmpp.2012.09.002
  14. Gimenez-Ibanez, S. and Solano, R. 2013. Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. Front. Plant Sci. 4:1-11.
  15. Jo, S.-J., Jang, K. S., Choi, Y. H., Kim, J.-C. and Choi, G. J. 2011. Development of convenient screening method for resistant radish to Plasmodiophora brassicae. Res. Plant Dis. 17:161-168. (in Korean) https://doi.org/10.5423/RPD.2011.17.2.161
  16. Kim, J.-S., Jee, H.-J., Gwag, J.-G., Kim, C.-K. and Shim, C.-K. 2010. Evaluation on red pepper germplasm lines (Capsicum spp.) for resistance to anthracnose caused by Colletotrichum acutatum. Plant Pathol. J. 26:273-279. https://doi.org/10.5423/PPJ.2010.26.3.273
  17. Kim, M.-J., Shim, C.-K., Kim, Y.-K., Jee, H.-J., Hong, S.-J., Park, J.-H. and Han, E.-J. 2013. Evaluation of watermelon germplasm for resistance to Phytophthora blight caused by Phytophthora capsici. Plant Pathol. J. 29:87-92. https://doi.org/10.5423/PPJ.OA.02.2012.0031
  18. Lee, Y. H. and Hong, J. K. 2014. Differential defence responses of susceptible and resistant kimchi cabbage cultivars to anthracnose, black spot and black rot diseases. Plant Pathol. DOI: 10.1111/ppa/12262.
  19. Leitner, M., Vandelle, E., Gaupels, F., Bellin, D. and Delledonne, M. 2009. NO signals in the haze: Nitric oxide signalling in plant defence. Curr. Opin. Plant Biol. 12:451-458. https://doi.org/10.1016/j.pbi.2009.05.012
  20. Leon-Reyes, A., Du, Y., Koornneef, A., Proietti, S., Korbes, A. P., Memelink, J., Pieterse, C. M. J. and Ritsema, T. 2010. Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Mol. Plant- Microbe Interact. 23:187-197. https://doi.org/10.1094/MPMI-23-2-0187
  21. Leon-Reyes, A., Spoel, S. H., De Lange, E. S., Abe, H., Kobayashi, M., Tsuda, S., Millenaar, F. F., Welschen, R. A. M., Ritsema, T. and Pieterse, C. M. J. 2009. Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling. Plant Physiol. 149:1797-1809. https://doi.org/10.1104/pp.108.133926
  22. Lorenzo, O., Piqueras, R., Sanchez-Serrano, J. J. and Solano, R. 2003. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165-178. https://doi.org/10.1105/tpc.007468
  23. Mandal, S., Mallick, N. and Mitra, A. 2009. Salicylic acidinduced resistance to Fusarium oxysporum f. sp. lycopersici. Plant Physiol. Biochem. 47:642-649. https://doi.org/10.1016/j.plaphy.2009.03.001
  24. Mayers, C. N., Lee, K.-C., Moore, C. A., Wong, S.-M. and Carr, J. P. 2005. Salicylic acid-induced resistance to Cucumber mosaic virus in squash and Arabidopsis thaliana: contrasting mechanisms of induction and antiviral action. Mol. Plant- Microbe Interact. 18:428-434. https://doi.org/10.1094/MPMI-18-0428
  25. Mei, J., Wei, D., Disi, J. O., Ding, Y., Liu, Y. and Qian, W. 2012. Screening resistance against Sclerotinia sclerotiorum in Brassica crops with use of detached stem assay under controlled environment. Eur. J. Plant Pathol. 134:599-604. https://doi.org/10.1007/s10658-012-0040-3
  26. Miles, T. D., Day, B. and Schilder, A. C. 2011. Identification of differentially expressed genes in a resistant versus susceptible blueberry cultivar after infection by Colletotrichum acutatum. Mol. Plant Pathol. 12:463-477. https://doi.org/10.1111/j.1364-3703.2010.00687.x
  27. Miles, T. D., Vandervoort, C., Nair, M. G. and Schilder, A. C. 2013. Characterization and biological activity of flavonoids from ripe fruit of an anthracnose-resistant blueberry cultivar. Physiol. Mol. Plant Pathol. 82:8-16.
  28. Moreau, M., Tian, M. and Klessig, D. F. 2012. Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses. Cell Res. 22:1631-1633. https://doi.org/10.1038/cr.2012.100
  29. Mur, L. A. J., Prats, E., Pierre, D., Hall, M. A. and Hebelstrup, K. H. 2013. Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Front. Plant Sci. 4:125.
  30. Ng, G., Seabolt, S., Zhang, C., Salimian, S., Watkins, T. A. and Lu, H. 2011. Genetic dissection of salicylic acid-mediated defense signaling networks in Arabidopsis. Genetics 189:851-859. https://doi.org/10.1534/genetics.111.132332
  31. Oka, K., Kobayashi, M., Mitsuhara, I. and Seo, S. 2013. Jasmonic acid negatively regulates resistance to Tobacco mosaic virus in tobacco. Plant Cell Physiol. 54:1999-2010. https://doi.org/10.1093/pcp/pct137
  32. Pieterse, C. M. J., Leon-Reyes, A., van der Ent, S. and van Wees, S. C. M. 2009. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5:308-317. https://doi.org/10.1038/nchembio.164
  33. Reuber, T. L., Plotnikova, J. M., Dewdney, J., Rogers, E. E., Wood, W. and Ausubel, F. M. 1998. Correlation of defense gene induction defects with powdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants. Plant J. 16:473-485. https://doi.org/10.1046/j.1365-313x.1998.00319.x
  34. Sari, E. and Etebarian, H. R. 2009. Concentration-dependent ef fect of salicylic acid application on wheat seedling resistance to take-all fungus, Gaeumannomyces graminis var. tritici. Phytoparasitica 37:67-76. https://doi.org/10.1007/s12600-008-0005-4
  35. Shang, J., Xi, D.-H., Xu, F., Wang, S.-D., Cao, S., Xu, M.-Y., Zhao, P.-P., Wang, J.-H., Jia, S.-D., Zhang, Z.-W., Yuan, S. and Lin, H.-H. 2011. A broad-spectrum, efficient and nontransgenic approach to control plant viruses by application of salicylic acid and jasmonic acid. Planta 233:299-308. https://doi.org/10.1007/s00425-010-1308-5
  36. Spoel, S. H., Johnson, J. S. and Dong, X. 2007. Regulation of tradeoffs between plant defenses and against pathogens with different lifestyles. Proc. Natl. Acad. Sci. USA 104:18842-18847. https://doi.org/10.1073/pnas.0708139104
  37. Taylor, A., Vagany, V., Barbara, D. J., Thomas, B., Pink, D. A. C., Jones, J. E. and Clarkson, J. P. 2013. Identification of differential resistance to six Fusarium oxysporum f. sp. cepae isolates in commercial onion cultivars through the development of a rapid seedling assay. Plant Pathol. 62:103-111. https://doi.org/10.1111/j.1365-3059.2012.02624.x
  38. Thomma, B. P., Eggermont, K., Penninckx, I. A., Mauch-Mani, B., Vogelsang, R., Cammue, B. P. and Broekaert, W. F. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95:15107-15111. https://doi.org/10.1073/pnas.95.25.15107
  39. Tian, S., Wan, Y., Qin, G. and Xu, Y. 2006. Induction of defense responses against Alternaria rot by different elicitors in harvested pear fruit. Appl. Microbiol. Biotechnol. 70:729-734. https://doi.org/10.1007/s00253-005-0125-4
  40. Vimala, R. and Suriachandraselva, M. 2009. Induced resistance in bhendi against powdery mildew by foliar application of salicylic acid. J. Biopest. 2:111-114.
  41. Vlot, A. C., Dempsey, D. A. and Klessig, D. F. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47:177-206. https://doi.org/10.1146/annurev.phyto.050908.135202
  42. Walters, D. R., Havis, N. D., Paterson, L., Taylor, J. and Walsh, D. J. 2011. Cultivar effects on the expression of induced resistance in spring barley. Plant Dis. 95:595-600. https://doi.org/10.1094/PDIS-08-10-0577
  43. Wang, Z., Tan, X., Zhang, Z., Gu, S., Li, G. and Shi, H. 2012. Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling. Plant Sci. 184:75-82. https://doi.org/10.1016/j.plantsci.2011.12.013
  44. Yao, H. J. and Tian, S. P. 2005. Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved. J. Appl. Microbiol. 98:941-950. https://doi.org/10.1111/j.1365-2672.2004.02531.x

Cited by

  1. Over-expression of a WRKY transcription factor gene BoWRKY6 enhances resistance to downy mildew in transgenic broccoli plants vol.45, pp.3, 2016, https://doi.org/10.1007/s13313-016-0416-5
  2. Evaluation of Resistance to Ralstonia solanacearum in Tomato Genetic Resources at Seedling Stage vol.32, pp.1, 2016, https://doi.org/10.5423/PPJ.NT.06.2015.0121
  3. Transgenic Arabidopsis plants expressing CsBCATs affect seed germination under abiotic stress conditions vol.13, pp.1, 2019, https://doi.org/10.1007/s11816-019-00515-6