DOI QR코드

DOI QR Code

A new strategy for protein crystallization : Effect of ionic liquids on lysozyme crystallization and morphology

  • Wang, Zhanzhong (School of Chemical Engineering and Technology, Tianjin University) ;
  • Fang, Wenzhi (School of Chemical Engineering and Technology, Tianjin University) ;
  • Li, Yan (School of Chemical Engineering and Technology, Tianjin University) ;
  • Zhang, Jingshu (Tianjin Centers For Disease Control and Prevention) ;
  • Gu, Qing (Tianjin Centers For Disease Control and Prevention)
  • Received : 2013.11.11
  • Accepted : 2014.02.17
  • Published : 2014.06.01

Abstract

Protein crystallization is a complex physical and chemical process. The high-quality protein crystal is still a persistent bottleneck to the application of X-ray crystallography in structural biology. The additives may promote formation of crystal nucleus and subsequent growth in protein crystallization. As a distinct material, ionic liquids (ILs) have aroused great attention and interest for protein crystallization due to their unique properties. We reviewed the progress of protein crystallization and reported research about protein crystal morphology control by ILs, as crystal growth template, in aqueous solutions. ILs encourage changes in some cases in terms of growth morphology and crystal size. The effect of ILs on lysozyme growth morphology can be attributed to changing interaction among lysozyme molecules in aqueous solutions. This work can provide some initial insight into the preparation of high quality crystal and the development of new crystal form.

Keywords

References

  1. D. Knezic, J. Zaccaro and A. S. Myerson, Cryst. Growth Des., 4, 199 (2004). https://doi.org/10.1021/cg034072o
  2. J. Lu, X. J. Wang and C. B. Ching, Cryst. Growth Des., 3, 83 (2003). https://doi.org/10.1021/cg0200412
  3. W. Ashwini and M. Cory, Cryst. Growth Des., 7, 2219 (2007). https://doi.org/10.1021/cg700702c
  4. M. C. R. Heijna, W. J. P. Van Enckevort and E. Vlieg, Cryst. Growth Des., 8, 270 (2008). https://doi.org/10.1021/cg0703036
  5. R. Giege, FEBS J., 280, 6456 (2013). https://doi.org/10.1111/febs.12580
  6. N. R. Galloway, H. Toutkoushian, M. Nune, N. Bose and C. Momany, Cryst. Growth Des., 13, 2833 (2013). https://doi.org/10.1021/cg400171z
  7. A. M. Edwards, C. H. Arrowsmith, D. Christendat, A. Dharamsi, J. D. Friesen, J. F. Greenblatt and M. Vedadi, Nat. Struct. Mol. Biol., 7, 970 (2000). https://doi.org/10.1038/80751
  8. R. Hui and A. Edwards, J. Struct. Biol., 142, 154 (2003). https://doi.org/10.1016/S1047-8477(03)00046-7
  9. P. Franken, S. Arold, A. Padilla, M. Bodeus, F. Hoh, M. P. Strub, M. Boyer, M. Jullien, R. Benarous and C. Dumas, Protein Sci., 6, 2681 (1997).
  10. U.V. Shah, D. R. Williams and J.Y.Y. Heng, Cryst. Growth Des., 12, 1362 (2012). https://doi.org/10.1021/cg201443s
  11. www.rcsb.org.
  12. R. C. Stevens, Struct, 8, R177 (2000). https://doi.org/10.1016/S0969-2126(00)00193-3
  13. Z. S. Derewenda, Methods, 34, 354 (2004). https://doi.org/10.1016/j.ymeth.2004.03.024
  14. A. McPherson and R. Gieg, Cryst. Growth Des., 7, 2126 (2007). https://doi.org/10.1021/cg700683a
  15. N. E. Chayen, Prog. Biophys. Mol. Biol., 88, 329 (2006).
  16. C. N. Nanev, Cryst. Res. Technol., 42, 4 (2007). https://doi.org/10.1002/crat.200610761
  17. J. P. Astier and S. Veesler, Cryst Growth Des., 8, 4215 (2008). https://doi.org/10.1021/cg800665b
  18. S. D. Durbin and W. E. Carlson, J. Cryst. Growth, 122, 71 (1992). https://doi.org/10.1016/0022-0248(92)90228-B
  19. K. Gomery, E. C. Humphrey and R. Herring, Microsc. Microanal., 19, 145 (2013).
  20. A. E. S. Van Driessche, F. Otalora, G. Sazaki, M. Sleutel, K. Tsukamoto and J. A. Gavira, Crys. Growth Des., 8, 4316 (2008). https://doi.org/10.1021/cg800782r
  21. A. Bernardo, C. E. Calmanovici and E. A. Miranda, Cryst. Growth Des., 4, 799 (2004). https://doi.org/10.1021/cg034170+
  22. S.-X. Lin, A. McPherson and R. Giege, Cryst. Growth Des., 7, 2124 (2007). https://doi.org/10.1021/cg700745r
  23. K. Waizumi and T. Eguchi, Chem. Lett., 34, 1654 (2005). https://doi.org/10.1246/cl.2005.1654
  24. H. Koizumi, M. Tachibana and K. Kojima, Phys. Rev. E, 73, 041910 (2006). https://doi.org/10.1103/PhysRevE.73.041910
  25. G. Sazaki, K. Tsukamoto, S. Yai, M. Okada and K. Nakajima, Cryst. Growth Des., 5, 1729 (2005). https://doi.org/10.1021/cg049605n
  26. P. Dold, K. Ono, G. Tsukamoto and G. Sazaki, J. Cryst. Growth, 293, 102 (2006). https://doi.org/10.1016/j.jcrysgro.2006.04.116
  27. R. Eli and L. S. Ivan, Adv. Colloid Interface Sci., 97, 123 (2006).
  28. O. Markman, C. Roh, M. F. Roberts and M. M. Teeter, J. Cryst. Growth, 160, 382 (1996). https://doi.org/10.1016/0022-0248(95)00745-8
  29. S. Tanaka, M. Ataka, T. Kubota, T. Soga, K. Homma, W. C. Lee and M. J. Tanokura, Cryst. Growth, 234, 247 (2002). https://doi.org/10.1016/S0022-0248(01)01657-8
  30. H. Hamana, H. Moriyama, T. Shinozawa and N. Tanaka, Acta Crystallogr., 55, 345 (1999).
  31. Y. D. Liu, G. Z. Wu and M.Y. Qi, J. Cryst. Growth, 281, 616 (2005). https://doi.org/10.1016/j.jcrysgro.2005.04.073
  32. P. Nockemann, B. Thijs, K.V. Hecke, L.V. Meervelt and K. Binnemans, Cryst. Growth Des., 8, 1353 (2008). https://doi.org/10.1021/cg701187t
  33. Y. Zhao, Z. H. Chen, H.Y. Wang and J. J. Wang, Cryst. Growth Des., 9, 4984 (2009). https://doi.org/10.1021/cg900771c
  34. J. Dupont, R. F. de Souza and P. A. Z. Suarez, Chem. Rev., 102, 3667 (2002). https://doi.org/10.1021/cr010338r
  35. A. E. Visser, A. E. R. P. Swatloski, W. M. Reichert, W. M. R. Mayton, S. Sheff, A. Wierzbicki, J. H. Davis and R. D. Rogers, Environ. Sci. Technol., 36, 2523 (2002). https://doi.org/10.1021/es0158004
  36. M. L. Pusey, M. S. Paley, M. B. Turner and R. D. Rogers, Cryst. Growth Des., 7, 787 (2007). https://doi.org/10.1021/cg060696t
  37. R. A. Judge, S. Takahashi, K. L. Longenecker, E. H. Fry, C. Abad- Zapatero and M. L. Chiu, Cryst. Growth Des., 9, 3463 (2009). https://doi.org/10.1021/cg900140b
  38. H. Dariusch, H. Dirk, J. Sebastian, S. Michael and W. B. Dirk, Biotechnol. Lett., 29, 1703 (2007). https://doi.org/10.1007/s10529-007-9456-9
  39. C. Lange, G. Patil and R. Rudolph, Protein Sci., 14, 2693 (2005). https://doi.org/10.1110/ps.051596605
  40. Z.-Z. Wang, H. Xiao, Y. Han, P. Jiang and Z. Zhou, J. Chem. Eng. Data, 56, 1700 (2011). https://doi.org/10.1021/je100880a
  41. Z.-Z. Wang, Q. Wang and L. Dang, Biotechnol. Bioprocess. Eng., 17, 1025 (2012). https://doi.org/10.1007/s12257-012-0096-0

Cited by

  1. 표면적이 증가된 반코마이신 결정화 공정에서 이온성 액체의 영향 vol.42, pp.3, 2014, https://doi.org/10.4014/kjmb.1407.07006