DOI QR코드

DOI QR Code

TP53 Polymorphisms in Sporadic North Indian Breast Cancer Patients

  • Sharma, Sarika (Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University) ;
  • Sambyal, Vasudha (Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University) ;
  • Guleria, Kamlesh (Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University) ;
  • Manjari, Mridu (Department of Pathology, Sri Guru Ram Das Institute of Medical Sciences and Research) ;
  • Sudan, Meena (Department of Radiotherapy, Sri Guru Ram Das Institute of Medical Sciences and Research) ;
  • Uppal, Manjit Singh (Department of Surgery, Sri Guru Ram Das Institute of Medical Sciences and Research) ;
  • Singh, Neeti Rajan (Department of Surgery, Sri Guru Ram Das Institute of Medical Sciences and Research) ;
  • Bansal, Darpan (Department of Surgery, Sri Guru Ram Das Institute of Medical Sciences and Research) ;
  • Gupta, Arun (Department of Surgery, Sri Guru Ram Das Institute of Medical Sciences and Research)
  • Published : 2014.08.30

Abstract

Background: The purpose of this study was to evaluate the potential association of five (p.P47S, p.R72P, PIN3 Ins16bp, p.R213R and r.13494g>a) polymorphisms of TP53 with the risk of developing breast cancer in North Indian Punjabi population. Methods: We screened DNA samples of 200 sporadic breast cancer patients (197 females and 3 males) and 200 unrelated healthy, gender and age matched individuals for the polymorphisms. Results: For the p.P47S polymorphism, we observed the PP genotype in 99.5% of the patients and PS genotype in only 1 patient. All the controls had the wild type PP genotype. The frequency of RR, RP and PP genotype of p.R72P was 23.5% vs 33.5%, 51.5% vs 45.5% and 25% vs 21% in patients and controls respectively. Heterozygous (RP) genotype was increased in breast cancer patients as compared to controls (51.5 vs 45.5%) and showed 1.61 fold significantly increased risk for breast cancer (OR=1.61, 95% CI, 1.01-2.58, p=0.04). In breast cancer patients the frequencies of A1A1, A1A2 and A2A2 genotypes of PIN3 Ins16bp polymorphism were 67%, 26% and 7% respectively whereas in controls the genotype frequencies were 68.5%, 27.5% and 4% respectively, with no significant difference. For p.R213R (c.639A>G), all individuals had homozygous wild type genotype. The frequencies of GG, GA and AA genotypes of TP53 r.13494g>a polymorphism were 62 vs 67.5%, 33 vs 28% and 5 vs 4.5% in patients and controls respectively, again without significant difference. We observed that RP-A1A1 genotype combination of p.R72P and PIN3 Ins16bp and RP-GG combination of p.R72P and r.13494g>a polymorphism showed significant risk of breast cancer (OR=1.65, 95%CI: 0.98-2.78, p=0.05; OR=1.72, 95%CI: 1.01-2.92, p=0.04). Conclusion: The results of present study indicated that among the five TP53 polymorphisms investigated, the p.R72P polymorphism, and the RP-A1A1 and RP-GG genotype combination contribute to breast cancer susceptibility in North Indians.

Keywords

References

  1. Adeli, K, Ogbonna, G (1990). Rapid purification of human DNA from whole blood for potential application in clinical chemistry laboratories. Clin Chem, 36, 261-4.
  2. Akkiprik M, Sonmez O, Gulluoglu BM, et al (2009). Analysis of p53 gene polymorphisms and protein over-expression in patients with breast cancer. Pathol Oncol Res, 15, 359-68. https://doi.org/10.1007/s12253-008-9129-6
  3. Alawadi S, Ghabreau L, Alsaleh M, et al (2011). P53 gene polymorphisms and breast cancer risk in Arab women. Med Oncol, 28, 709-15. https://doi.org/10.1007/s12032-010-9505-4
  4. Al-Qasem A, Toulimat M, Tulbah A, et al (2012). The p53 codon 72 polymorphism is associated with risk and early onset of breast cancer among Saudi women. Oncol Lett, 3, 875-8.
  5. Aoki MN, Herrera AC, Amarante MK, et al (2009). CCR5 and p53 codon 72 gene polymorphisms: Implications in breast cancer development. Int J Mol Med, 23, 429-35.
  6. Avigad S, Barel D, Blau O, et al (1997). A novel germ line p53 mutation in intron 6 in diverse childhood malignancies. Oncogene, 14, 1541-5. https://doi.org/10.1038/sj.onc.1200990
  7. Bergamaschi D, Gasco M, Hiller L, et al (2003). p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell, 3, 387-402. https://doi.org/10.1016/S1535-6108(03)00079-5
  8. Bisof V, Salihovic MP, Narancic NS, et al (2012). The TP53 gene polymorphisms and survival of sporadic breast cancer patients. Med Oncol, 29, 472-8. https://doi.org/10.1007/s12032-011-9875-2
  9. Bonafe M, Ceccarelli C, Farabegoli F, et al (2003). Retention of the p53 codon 72 arginine allele is associated with a reduction of disease-free and overall survival in arginine/ proline heterozygous breast cancer patients. Clin Cancer Res, 9, 4860-4.
  10. Boroujeni HR, Karimi M, Moshkelani S, et al (2013). Association of the p53 codon 72 polymorphism with breast cancer in central part of Iran. African J Pharmacy Pharmacology, 7, 356-9. https://doi.org/10.5897/AJPP12.587
  11. Buyru N, Tigli H, Dalay N (2003). P53 codon 72 polymorphism in breast cancer. Oncol Rep, 10, 711-4.
  12. Carbone D, Chiba I, Mitsudomi T (1991). Polymorphism at codon 213 within the p53 gene. Oncogene, 6, 1691-2.
  13. Chumakov PM, Jenkins JR. (1991). BstNI/NciI polymorphism of the human p53 gene (TP53). Nucleic Acids Res, 19, 6969.
  14. Costa S, Pinto D, Morais A, et al (2005). Acetylation genotype and the genetic susceptibility to prostate cancer in a southern European population. Prostate, 64, 246-52. https://doi.org/10.1002/pros.20241
  15. Costa S, Pinto D, Pereira D, et al (2007). Importance of xeroderma pigmentosum group D polymorphisms in susceptibility to ovarian cancer. Cancer Lett, 246, 324-30. https://doi.org/10.1016/j.canlet.2006.03.014
  16. Costa S, Pinto D, Pereira D, et al (2008). Importance of TP53 codon 72 and intron 3 duplication 16bp polymorphisms in prediction of susceptibility on breast cancer. BMC Cancer, 8, 32. https://doi.org/10.1186/1471-2407-8-32
  17. Damin AP, Frazzon AP, Damin DC, et al (2006). Evidence for an association of TP53 codon 72 polymorphism with breast cancer risk. Cancer Detect Prev, 30, 523-9. https://doi.org/10.1016/j.cdp.2006.09.007
  18. Daugherty CL, Curtis H, Realini T, Charlton JF, Zareparsi S (2009). Primary open angle glaucoma in a Caucasian population is associated with the p53 codon 72 polymorphism. Mol Vis, 15, 1939-44.
  19. De Vecchi G, Verderio P, Pizzamiglio S, et al (2008). The p53 Arg72Pro and Ins16bp polymorphisms and their haplotypes are not associated with breast cancer risk in BRCA-mutation negative familial cases. Cancer Detect Prev, 32, 140-3. https://doi.org/10.1016/j.cdp.2008.06.003
  20. DHFW (2013). State Wide Door to Door Campaign, Cancer Awareness and Symptom Based Early Detection. Government of Punjab, Chandigarh, India.
  21. Dumont P, Leu JI, Della Pietra AC 3rd, George DL, Murphy M (2003). The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nature Genet, 33, 357-65. https://doi.org/10.1038/ng1093
  22. Faghani M, Ghasemi FM, Nikhbakht M, Salehi M (2011). TP53 PIN3 polymorphism associated with breast cancer risk in Iranian women. Indian J Cancer, 48, 298-302. https://doi.org/10.4103/0019-509X.84925
  23. Felley-Bosco E, Weston A, Cawley HM, Bennett WP, Harris CC (1993). Functional studies of a germ-line polymorphism at codon 47 within the p53 gene. Am J Hum Genet, 53, 752-9.
  24. Ferlay J, Soerjomataram I, Ervik M, et al (2012). GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013. Available from: http://globocan.iarc.fr, accessed on 31/05/2014
  25. Franekova M, Zubor P, Stanclova A, et al (2007). Association of p53 polymorphisms with breast cancer: a case-control study in Slovak population. Neoplasma, 54, 155-61.
  26. Gemignani F, Moreno V, Landi S, et al (2004). A TP53 polymorphism is associated with increased risk of colorectal cancer and with reduced levels of TP53 mRNA. Oncogene, 23, 1954-6. https://doi.org/10.1038/sj.onc.1207305
  27. Guleria K, Sharma S, Manjari M, et al (2012). p.R72P, PIN3 Ins16bp polymorphisms of TP53 and $CCR5{\Delta}32$ in north Indian breast cancer patients. Asian Pac J Cancer Prev, 13, 3305-11. https://doi.org/10.7314/APJCP.2012.13.7.3305
  28. Hillebrandt S, Streffer C, Demidchik EP, Biko J, Reiners C (1997). Polymorphisms in the p53 gene in thyroid tumours and blood samples of children from areas in Belarus. Mutat Res, 381, 201-7. https://doi.org/10.1016/S0027-5107(97)00169-3
  29. Hillebrandt S, Streffer C, Reiners C, Demidchik E (1996). Mutations in the p53 tumour suppressor gene in thyroid tumours of children from areas contaminated by the Chernobyl accident. Int J Radiat Biol, 69, 39-45. https://doi.org/10.1080/095530096146165
  30. Hrstka R, Beranek M, Klocova K, Nenutil R, Vojtesek B (2009). Intronic polymorphisms in TP53 indicate lymph node metastasis in breast cancer. Oncol Rep, 22, 1205-11.
  31. Huang XE, Hamajima N, Katsuda N, et al, (2003). Association of p53 codon Arg72Pro and p73 G4C14-to A4T14 at exon 2 genetic polymorphisms with the risk of Japanese breast cancer. Breast Cancer, 10, 307-11. https://doi.org/10.1007/BF02967650
  32. Ilhan I, Erekul S, Atesalp S, Ilhan O, Akar N (1995). p53 codon 213 (A-G) polymorphism in a Turkish population. Pediatr Hematol Oncol, 12, 499-501. https://doi.org/10.3109/08880019509009482
  33. Isobe M, Emanuel BS, Givol D, Oren M, Croce CM (1986). Localization of gene for human p53 tumour antigen to band 17p13. Nature, 320, 84-5. https://doi.org/10.1038/320084a0
  34. Jaiswal PK, Goel A, Mittal RD (2011). Association of p53 codon 248 (exon7) with urinary bladder cancer risk in the North Indian population. Biosci Trends, 5, 205-10. https://doi.org/10.5582/bst.2011.v5.5.205
  35. Kalemi TG, Lambropoulos AF, Gueorguiev M, et al (2005). The association of p53 mutations and p53 codon 72, Her 2 codon 655 and MTHFR C677T polymorphisms with breast cancer in Northern Greece. Cancer Lett, 222, 57-65. https://doi.org/10.1016/j.canlet.2004.11.025
  36. Kawajiri K, Nakachi K, Imai K, Watanabe J, Hayashi S (1993). Germ line polymorphisms of p53 and CYP1A1 genes involved in human lung cancer. Carcinogenesis, 14, 1085-9. https://doi.org/10.1093/carcin/14.6.1085
  37. Kazemi M, Salehi Z, Chakosari RJ (2009). TP53 codon 72 polymorphism and breast cancer in northern Iran. Oncol Res, 18, 25-30. https://doi.org/10.3727/096504009789745629
  38. Khadang B, Fattahi MJ, Talei A, Dehaghani AS, Ghaderi A (2007). Polymorphism of TP53 codon 72 showed no association with breast cancer in Iranian women. Cancer Genet Cytogenet, 173, 38-42. https://doi.org/10.1016/j.cancergencyto.2006.09.010
  39. Khaliq S, Hameed A, Khaliq T, et al (2000). P53 mutations, polymorphisms, and haplotypes in Pakistani ethnic groups and breast cancer patients. Genet Test, 4, 23-9. https://doi.org/10.1089/109065700316435
  40. Lamb P, Crawford L (1986). Characterization of the human p53 gene. Mol Cell Biol, 6, 1379-85.
  41. Lazar V, Hazard F, Bertin F, et al (1993). Simple sequence repeat polymorphism within the p53 gene. Oncogene, 8, 1703-5.
  42. Lehman TA, Haffty BG, Carbone CJ, et al (2000). Elevated frequency and functional activity of a specific germ-line p53 intron mutation in familial breast cancer. Cancer Res, 60, 1062-9.
  43. Levine AJ (1997). p53, the cellular gatekeeper for growth and division. Cell, 88, 323-31. https://doi.org/10.1016/S0092-8674(00)81871-1
  44. Levine AJ, Oren M. (2009). The first 30 years of p53: growing ever more complex. Nat Rev Cancer, 9, 749-58. https://doi.org/10.1038/nrc2723
  45. Li X, Dumont P, Della Pietra A, Shetler C, Murphy ME (2005). The codon 47 polymorphism in p53 is functionally significant. J Biol Chem, 280, 24245-51. https://doi.org/10.1074/jbc.M414637200
  46. Ma H, Hu Z, Zhai X, et al (2006). Joint effects of single nucleotide polymorphisms in P53BP1 and p53 on breast cancer risk in a Chinese population. Carcinogenesis, 27, 766-71.
  47. Mabrouk I, Baccouche S, El-Abed R, et al (2003). No evidence of correlation between p53 codon 72 polymorphism and risk of bladder or breast carcinoma inTunisian patients. Ann N Y Acad Sci, 1010, 764-70. https://doi.org/10.1196/annals.1299.137
  48. Malkinson AM, You M (1994).The intronic structure of cancer-related genes regulates susceptibility to cancer. Mol Carcinog, 10, 61-5. https://doi.org/10.1002/mc.2940100202
  49. Mandal RK, Yadav SS, Panda AK (2014). No evidence of correlation between p53 codon 72 G>C gene polymorphism and cancer risk in Indian population: a meta-analysis. Tumour Biol, (in press).
  50. Mavridou D, Gornall R, Campbell IG, Eccles DM (1998). TP53 intron 6 polymorphism and the risk of ovarian and breast cancer. Br J Cancer, 77, 676-7. https://doi.org/10.1038/bjc.1998.108
  51. Mazars GR, Jeanteur P, Lynch HT, Lenoir G, Theillet C (1992). Nucleotide sequence polymorphism in a hotspot mutation region of the p53 gene. Oncogene, 7, 781-2.
  52. McDaniel T, Carbone D, Takahashi T, et al (1991). The MspI polymorphism in intron 6 of p53 (TP53) detected by digestion of PCR products. Nucleic Acids Res, 19, 4796.
  53. Medeiros R, Vasconcelos A, Costa S, et al (2004). Metabolic susceptibility genes and prostate cancer risk in a southern European population: the role of glutathione S-transferases GSTM1, GSTM3, and GSTT1 genetic polymorphisms. Prostate, 58, 414-20. https://doi.org/10.1002/pros.10348
  54. Moll UM, Schramm LM (1998). p53 an acrobat in tumorigenesis. Crit Rev Oral Biol Med, 9, 23-37. https://doi.org/10.1177/10454411980090010101
  55. Murphy ME (2006). Polymorphic variants in the p53 pathway. Cell Death Differ, 13, 916-20. https://doi.org/10.1038/sj.cdd.4401907
  56. Nigro JM, Baker SJ, Preisinger AC, et al (1989). Mutations in p53gene occur in diverse human tumor types. Nature, 342, 705-8. https://doi.org/10.1038/342705a0
  57. Noma C, Miyoshi Y, Taguchi T, Tamaki Y, Noguchi S (2004). Association of p53 genetic polymorphism (Arg72Pro) with estrogen receptor positive breast cancer risk in Japanese women. Cancer Lett, 210, 197-203. https://doi.org/10.1016/j.canlet.2004.03.031
  58. Ohayon T, Gershoni-Baruch R, Papa MZ, et al (2005). The R72P P53 mutation is associated with familial breast cancer in Jewish women. Br J Cancer, 92, 1144-8. https://doi.org/10.1038/sj.bjc.6602451
  59. Orsted DD, Bojesen SE, Tybjaerg-Hansen A, Nordestgaard BG (2007). Tumor suppressor p53 Arg72Pro polymorphism and longevity, cancer survival, and risk of cancer in the general population. J Exp Med, 204, 1295-1301. https://doi.org/10.1084/jem.20062476
  60. Papadakis EN, Dokianakis DN, Spandidos DA (2000). p53 codon 72 polymorphism as a risk factor in the development of breast cancer. Mol Cell Biol Res Commun, 3, 389-92. https://doi.org/10.1006/mcbr.2000.0241
  61. Peller S, Kopilova Y, Slutzki S, et al (1995). A novel polymorphism in intron 6 of the human p53 gene: a possible association with cancer predisposition and susceptibility. DNA Cell Biol, 14, 983-90. https://doi.org/10.1089/dna.1995.14.983
  62. Perfumo C, Bonelli L, Menichini P, et al (2006). Increased risk of colorectal adenomas in Italian subjects carrying the p53 PIN3 A2-Pro72 haplotype. Digestion, 74, 228-35. https://doi.org/10.1159/000100966
  63. Pern F, Bogdanova N, Schurmann P, et al (2012). Mutation analysis of BRCA1, BRCA2, PALB2 and BRD7 in a hospital-based series of German patients with triple-negative breast cancer. PLoS One, 7, e47993. https://doi.org/10.1371/journal.pone.0047993
  64. Pilger DA, Lopez PL, Segal F, Leistner-Segal S (2007). Analysis of R213R and 13494 g>a polymorphisms of the p53 gene in individuals with esophagitis, intestinal metaplasia of the cardia and Barrett's esophagus compared with a control group. Genomic Med, 1, 57-63. https://doi.org/10.1007/s11568-007-9007-4
  65. Pim D, Banks L (2004). p53 polymorphic variants at codon 72 exert different effects on cell cycle progression. Int J Cancer, 108, 196-9. https://doi.org/10.1002/ijc.11548
  66. Pinto D, Vasconcelos A, Costa S, et al (2004). HER2 polymorphism and breast cancer risk in Portugal. Eur J Cancer Prev, 13, 177-81. https://doi.org/10.1097/01.cej.0000130015.91525.c7
  67. Pinto GR, Yoshioka FK, Silva RL, et al (2008). Prognostic value of TP53 Pro47Ser and Arg72Pro single nucleotide polymorphisms and the susceptibility to gliomas in individuals from Southeast Brazil. Genet Mol Res, 7, 207-16. https://doi.org/10.4238/vol7-1gmr415
  68. Pouladi N, Kouhsari SM, Feizi MH, et al (2014). Lack of association of intron 3 16bp polymorphism of TP53 with breast cancer among Iranian-Azeri patients. Asian Pac J Cancer Prev, 15, 2631-4. https://doi.org/10.7314/APJCP.2014.15.6.2631
  69. Proestling K, Hebar A, Pruckner N, et al (2012). The Pro allele of the p53 codon 72 polymorphism is associated with decreased intratumoral expression of BAX and p21, and increased breast cancer risk. PLoS One, 7, e47325. https://doi.org/10.1371/journal.pone.0047325
  70. Riley T, Sontag E, Chen P, Levine A (2008).Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol, 9, 402-12. https://doi.org/10.1038/nrm2395
  71. Robles AI, Linke SP, Harris CC (2002). The p53 network in lung carcinogenesis. Oncogene, 21, 6898-907. https://doi.org/10.1038/sj.onc.1205563
  72. Rodrigues P, Furriol J, Tormo E, et al (2013). Epistatic interaction of Arg72Pro TP53 and -710 C/T VEGFR1 polymorphisms in breast cancer: predisposition and survival. Mol Cell Biochem, 379, 181-90. https://doi.org/10.1007/s11010-013-1640-8
  73. Sagne C, Marcel V, Amadou A, et al (2013). A meta-analysis of cancer risk associated with the TP53 intron 3 duplication polymorphism (rs17878362): geographic and tumor-specific effects. Cell Death Dis, 4, e492. https://doi.org/10.1038/cddis.2013.24
  74. Sameer AS, Shah ZA, Syeed N, et al (2010). TP53 Pro47Ser and Arg72Pro polymorphisms and colorectal cancer predisposition in an ethnic Kashmiri population. Genet Mol Res, 9, 651-60. https://doi.org/10.4238/vol9-2gmr751
  75. Santos LE, Guilhen AC, de Andrade RA, Sumi LG, Ward LS (2011). The role of TP53 Pro47Ser and Arg72Pro single nucleotide polymorphisms in the susceptibility to bladder cancer. Urol Oncol, 29, 291-4. https://doi.org/10.1016/j.urolonc.2009.03.026
  76. Sayeed N, Sameer AS, Abdullah S, et al (2010). A case-control study of TP53 R72P polymorphism in breast cancer patients of ethnic Kashmiri population. World J Oncol, 1, 236-41.
  77. Singamsetty GK, Malempati S, Bhogadhi S, et al (2014). TP53 alterations and colorectal cancer predisposition in south Indian population: a case-control study. Tumour Biol, 35, 2303-11. https://doi.org/10.1007/s13277-013-1305-y
  78. Sjalander A, Birgander R, Hallmans G, et al (1996). p53 polymorphisms and haplotypes in breast cancer. Carcinogenesis, 17, 1313-6. https://doi.org/10.1093/carcin/17.6.1313
  79. Soussi T, Lozano G (2005). p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun, 331, 834-42. https://doi.org/10.1016/j.bbrc.2005.03.190
  80. Storey A, Thomas M, Kalita A, et al (1998). Role of a p53 polymorphism in the development of human papillomavirusassociated cancer. Nature, 393, 229-34. https://doi.org/10.1038/30400
  81. Sullivan A, Syed N, Gasco M, et al (2004). Polymorphism in wild-type p53 modulates response to chemotherapy in vitro and in vivo. Oncogene, 23, 3328-37. https://doi.org/10.1038/sj.onc.1207428
  82. Surekha D, Sailaja K, Rao DN, et al (2011). Codon 72 and G13964C intron 6 polymorphisms of TP53 in relation to development and progression of breast cancer in India. Asian Pac J Cancer Prev, 12, 1893-8.
  83. Suresh K, Venkatesan R, Chandirasekar R, Kumar BL, Sasikala (2011). Association of Trp53 arg72pro polymorphic variants with breast cancer - a case control study in south Indian population. Biology Medicine, 3, 15-22.
  84. Suspitsin EN, Buslov KG, Grigoriev MY, et al (2003). Evidence against involvement of p53 polymorphism in breast cancer predisposition. Int J Cancer, 103, 431-3. https://doi.org/10.1002/ijc.10834
  85. The Tribune, Chandigarh, India. 18 die of cancer in Punjab everyday. 2013. http://www.tribuneindia. com/2013/20130129/main3.htm [January 29; 2013]
  86. Thomas M, Kalita A, Labrecque S, et al (1999). Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol, 19, 1092-100.
  87. Tommiska J, Eerola H, Heinonen M, et al (2005). Breast cancer patients with p53 Pro72 homozygous genotype have a poorer survival. Clin Cancer Res, 11, 5098-103 https://doi.org/10.1158/1078-0432.CCR-05-0173
  88. Trifa F, Karray-Chouayekh S, Mabrouk I, et al (2010). Haplotype analysis of p53 polymorphisms: Arg72Pro, Ins16bp and G13964C in Tunisian patients with familial or sporadic breast cancer. Cancer Epidemiol, 34, 184-8. https://doi.org/10.1016/j.canep.2010.02.007
  89. Van Heemst D, Mooijaart SP, Beekman M, et al, (2005). Variation in the human TP53 gene affects old age survival and cancer mortality. Exp Gerontol, 40, 11-5. https://doi.org/10.1016/j.exger.2004.10.001
  90. Vieira JO, da Silva ID, Higo PE, Nogueira-de-Souza NC, Gebrim LH (2008). Study of p53 codon 72 polymorphism in patients with breast cancer. Eur J Gynaecol Oncol, 29, 364-7.
  91. Vijayaraman KP, Veluchamy M, Murugesan P, Shanmugiah KP,Kasi PD (2012). p53 exon 4 (codon 72) polymorphism and exon 7 (codon 249) mutation in breast cancer patients in southern region (Madurai) of Tamil Nadu. Asian Pac J Cancer Prev, 13, 511-6. https://doi.org/10.7314/APJCP.2012.13.2.511
  92. Wajapeyee N, Somasundaram K (2004). Pharmacogenomics in breast cancer: current trends and future directions. Curr Opin Mol Ther, 6, 296-301.
  93. Walerych D, Napoli M, Collavin L, Del Sal G (2012). The rebel angel: mutant p53 as the driving oncogene in breast cancer. Carcinogenesis, 33, 2007-17. https://doi.org/10.1093/carcin/bgs232
  94. Wang-Gohrke S, Becher H, Kreienberg R, Runnebaum IB, Chang-Claude J (2002). Intron 3 16 bp duplication polymorphism of p53 is associated with an increased risk for breast cancer by the age of 50 years. Pharmacogenetics, 12, 269-72. https://doi.org/10.1097/00008571-200204000-00012
  95. Wang-Gohrke S, Rebbeck TR, Besenfelder W, et al (1998). p53 germline polymorphisms are associated with an increased risk for breast cancer in German women. Anticancer Res, 18, 2095-9.
  96. Wang-Gohrke S, Weikel W, Risch H, et al (1999). Intron variants of the p53 gene are associated with increased risk for ovarian cancer but not in carriers of BRCA1 or BRCA2 germline mutations. Br J Cancer, 81, 179-83. https://doi.org/10.1038/sj.bjc.6690669
  97. Weston A, Pan CF, Ksieski HB, et al (1997).p53 haplotype determination in breast cancer. Cancer Epidemiol Biomarkers Prev, 6, 105-12.
  98. Whibley C, Pharoah PD, Hollstein M (2009). p53 polymorphisms: cancer implications. Nat Rev Cancer, 9, 95-107. https://doi.org/10.1038/nrc2584
  99. Wu D, Zhang Z, Chu H, et al (2013). Intron 3 sixteen base pairs duplication polymorphism of p53 contributes to breast cancer susceptibility: evidence from meta-analysis. PLoS One, 8, e61662. https://doi.org/10.1371/journal.pone.0061662
  100. Wu X, Zhao H, Amos CI, et al (2002). p53 genotypes and haplotypes associated with lung cancer susceptibility and ethnicity. J Natl Cancer Inst, 94, 681-90. https://doi.org/10.1093/jnci/94.9.681
  101. Xu Y, Yao L, Ouyang T, et al (2005). p53 Codon 72 polymorphism predicts the pathologic response to neoadjuvant chemotherapy in patients with breast cancer. Clin Cancer Res, 11, 7328-33. https://doi.org/10.1158/1078-0432.CCR-05-0507
  102. Zhang Z, Wang M, Wu D, et al (2010). P53 codon 72 polymorphism contributes to breast cancer risk: a metaanalysis based on 39 case-control studies. Breast Cancer Res Treat, 120, 509-17. https://doi.org/10.1007/s10549-009-0480-4
  103. Zhou Y, Li N, Zhuang W, et al (2007). P53 codon 72 polymorphism and gastric cancer: a meta-analysis of the literature. Int J Cancer, 121, 1481-6. https://doi.org/10.1002/ijc.22833

Cited by

  1. Targeted Resequencing of 30 Genes Improves the Detection of Deleterious Mutations in South Indian Women with Breast and/or Ovarian Cancers vol.16, pp.13, 2015, https://doi.org/10.7314/APJCP.2015.16.13.5211
  2. Hypermethylation of Promoter Region of LATS1 - a CDK Interacting Protein in Oral Squamous Cell Carcinomas - a Pilot Study in India vol.16, pp.4, 2015, https://doi.org/10.7314/APJCP.2015.16.4.1599
  3. BRD7 Promoter Hypermethylation as an Indicator of Well Differentiated Oral Squamous Cell Carcinomas vol.16, pp.4, 2015, https://doi.org/10.7314/APJCP.2015.16.4.1615
  4. Lack of Influence of TP53 Arg72Pro and 16bp Duplication Polymorphisms on Risk of Breast Cancer in Iran vol.16, pp.7, 2015, https://doi.org/10.7314/APJCP.2015.16.7.2971
  5. No association of TP53 codon 72 and intron 3 16-bp duplication polymorphisms with breast cancer risk in Chinese Han women: new evidence from a population-based case–control investigation vol.23, pp.1, 2018, https://doi.org/10.1186/s40001-018-0345-6