DOI QR코드

DOI QR Code

Associations between AT-rich Interactive Domain 5B gene Polymorphisms and Risk of Childhood Acute Lymphoblastic Leukemia: a Meta-analysis

  • Zeng, Hui (Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University) ;
  • Wang, Xue-Bin (Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University) ;
  • Cui, Ning-Hua (Department of Clinical Laboratory, Children's Hospital of Zhengzhou) ;
  • Nam, Seungyoon (Cancer Genomics Branch, National Cancer Center) ;
  • Zeng, Tuo (School of Life Sciences, Guizhou Normal University) ;
  • Long, Xinghua (Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University)
  • Published : 2014.08.15

Abstract

Previous genome-wide association studies (GWAS) have implicated several single nucleotide polymorphisms (SNPs) in the AT-rich interactive domain 5B (ARID5B) gene with childhood acute lymphoblastic leukemia (ALL). However, replicated studies reported some inconsistent results in different populations. Using meta-analysis, we here aimed to clarify the nature of the genetic risks contributed by the two polymorphisms (rs10994982, rs7089424) for developing childhood ALL. Through searches of PubMed, EMBASE, and manually searching relevant references, a total of 14 articles with 16 independent studies were included. Odds ratios (ORs) with 95% confidence intervals (95%CI) were calculated to assess the associations. Both SNPs rs10994982 and rs7089424 showed significant associations with childhood ALL risk in all genetic models after Bonferroni correction. Furthermore, subtype analyses of B-lineage ALL provided strong evidence that SNP rs10994982 is highly associated with the risk of developing B-hyperdiploid ALL. These results indicate that SNPs rs10994982 and rs7089424 are indeed significantly associated with increased risk of childhood ALL.

Keywords

References

  1. Begg CB, Mazumdar M (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics, 50, 1088-101. https://doi.org/10.2307/2533446
  2. Chokkalingam AP, Hsu LI, Metayer C, et al (2013). Genetic variants in ARID5B and CEBPE are childhood ALL susceptibility loci in Hispanics. Cancer Causes Control, 24, 1789-95. https://doi.org/10.1007/s10552-013-0256-3
  3. DerSimonian R, Kacker R (2007). Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials, 28, 105-14. https://doi.org/10.1016/j.cct.2006.04.004
  4. Egger M, Davey Smith G, Schneider M, Minder C (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315, 629-34. https://doi.org/10.1136/bmj.315.7109.629
  5. Emerenciano M, Barbosa TC, Lopes BA, et al (2014). ARID5B polymorphism confers an increased risk to acquire specific MLL rearrangements in early childhood leukemia. BMC Cancer, 14, 127. https://doi.org/10.1186/1471-2407-14-127
  6. Greaves M (2006). Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer, 6, 193-203. https://doi.org/10.1038/nrc1816
  7. Guo LM, Xi JS, Ma Y, et al (2014). ARID5B gene rs10821936 polymorphism is associated with childhood acute lymphoblastic leukemia: a meta-analysis based on 39, 116 subjects. Tumour Biol, 35, 709-13. https://doi.org/10.1007/s13277-013-1097-0
  8. Gutierrez-Camino A, Lopez-Lopez E, Martin-Guerrero I, et al (2013). Intron 3 of the ARID5B gene: a hot spot for acute lymphoblastic leukemia susceptibility. J Cancer Res Clin Oncol, 139, 1879-86. https://doi.org/10.1007/s00432-013-1512-3
  9. Han S, Lee KM, Park SK, et al (2010). Genome-wide association study of childhood acute lymphoblastic leukemia in Korea. Leuk Res, 34, 1271-4. https://doi.org/10.1016/j.leukres.2010.02.001
  10. Healy J, Richer C, Bourgey M, Kritikou EA, Sinnett D (2010). Replication analysis confirms the association of ARID5B with childhood B-cell acute lymphoblastic leukemia. Haematologica, 95, 1608-11. https://doi.org/10.3324/haematol.2010.022459
  11. Hedges LV, Pigott TD (2004). The power of statistical tests for moderators in meta-analysis. Psychol Methods, 9, 426-45. https://doi.org/10.1037/1082-989X.9.4.426
  12. Higgins JP, Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat Med, 21, 1539-58. https://doi.org/10.1002/sim.1186
  13. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003). Measuring inconsistency in meta-analyses. BMJ, 327, 557-60. https://doi.org/10.1136/bmj.327.7414.557
  14. Huang TH, Oka T, Asai T, et al (1996). Repression by a differentiation-specific factor of the human cytomegalovirus enhancer. Nucleic Acids Res, 24, 1695-701. https://doi.org/10.1093/nar/24.9.1695
  15. Huy NT, Thao NT, Diep DT, et al (2010). Cerebrospinal fluid lactate concentration to distinguish bacterial from aseptic meningitis: a systemic review and meta-analysis. Crit Care, 14, 240. https://doi.org/10.1186/cc9268
  16. Ioannidis JP, Patsopoulos NA, Evangelou E (2007). Uncertainty in heterogeneity estimates in meta-analyses. Bmj, 335, 914-6. https://doi.org/10.1136/bmj.39343.408449.80
  17. Iqbal Z (2014). Molecular genetic studies on 167 pediatric ALL patients from different areas of Pakistan confirm a low frequency of the favorable prognosis fusion oncogene TEL-AML1 (t 12; 21) in underdeveloped countries of the region. Asian Pac J Cancer Prev, 15, 3541-6. https://doi.org/10.7314/APJCP.2014.15.8.3541
  18. Jensen K, Schaffer L, Olstad OK, et al (2010). Striking decrease in the total precursor B-cell compartment during early childhood as evidenced by flow cytometry and gene expression changes. Pediatr Hematol Oncol, 27, 31-45. https://doi.org/10.3109/08880010903420687
  19. Jiang Y, Hou J, Zhang Q, et al (2013). The MTHFR C677T polymorphism and risk of acute lymphoblastic leukemia: an updated meta-analysis based on 37 case-control studies. Asian Pac J Cancer Prev, 14, 6357-62. https://doi.org/10.7314/APJCP.2013.14.11.6357
  20. Lahoud MH, Ristevski S, Venter DJ, et al (2001). Gene targeting of Desrt, a novel ARID class DNA-binding protein, causes growth retardation and abnormal development of reproductive organs. Genome Res, 11, 1327-34. https://doi.org/10.1101/gr.168801
  21. Langan D, Higgins JP, Gregory W, Sutton AJ (2012). Graphical augmentations to the funnel plot assess the impact of additional evidence on a meta-analysis. J Clin Epidemiol, 65, 511-9. https://doi.org/10.1016/j.jclinepi.2011.10.009
  22. Lautner-Csorba O, Gezsi A, Semsei AF, et al (2012). Candidate gene association study in pediatric acute lymphoblastic leukemia evaluated by Bayesian network based Bayesian multilevel analysis of relevance. BMC Med Genomics, 5, 42. https://doi.org/10.1186/1755-8794-5-42
  23. Levine RL (2009). Inherited susceptibility to pediatric acute lymphoblastic leukemia. Nat Genet, 41, 957-8. https://doi.org/10.1038/ng0909-957
  24. Lin CY, Li MJ, Chang JG, et al (2014). High-resolution melting analyses for genetic variants in ARID5B and IKZF1 with childhood acute lymphoblastic leukemia susceptibility loci in Taiwan. Blood Cells Mol Dis, 52, 140-5. https://doi.org/10.1016/j.bcmd.2013.10.003
  25. Linabery AM, Ross JA (2008). Trends in childhood cancer incidence in the U.S. (1992-2004). Cancer, 112, 416-32. https://doi.org/10.1002/cncr.23169
  26. Linabery AM, Blommer CN, Spector LG, et al (2013). ARID5B and IKZF1 variants, selected demographic factors, and childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. Leuk Res, 37, 936-42. https://doi.org/10.1016/j.leukres.2013.04.022
  27. Orsi L, Rudant J, Bonaventure A, et al (2012). Genetic polymorphisms and childhood acute lymphoblastic leukemia: GWAS of the ESCALE study (SFCE). Leukemia, 26, 2561-4. https://doi.org/10.1038/leu.2012.148
  28. Papaemmanuil E, Hosking FJ, Vijayakrishnan J, et al (2009). Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet, 41, 1006-10. https://doi.org/10.1038/ng.430
  29. Pastorczak A, Gorniak P, Sherborne A, et al (2011). Role of 657del5 NBN mutation and 7p12.2 (IKZF1), 9p21 (CDKN2A), 10q21.2 (ARID5B) and 14q11.2 (CEBPE) variation and risk of childhood ALL in the Polish population. Leuk Res, 35, 1534-6. https://doi.org/10.1016/j.leukres.2011.07.034
  30. Paulsson K, Forestier E, Lilljebjorn H, et al (2010). Genetic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA, 107, 21719-24. https://doi.org/10.1073/pnas.1006981107
  31. Peyrouze P, Guihard S, Grardel N, et al (2012). Genetic polymorphisms in ARID5B, CEBPE, IKZF1 and CDKN2A in relation with risk of acute lymphoblastic leukaemia in adults: a Group for Research on Adult Acute Lymphoblastic Leukaemia (GRAALL) study. Br J Haematol, 159, 599-602.
  32. Prasad RB, Hosking FJ, Vijayakrishnan J, et al (2010). Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood. Blood, 115, 1765-7. https://doi.org/10.1182/blood-2009-09-241513
  33. Pui CH, Relling MV, Downing JR (2004). Acute lymphoblastic leukemia. N Engl J Med, 350, 1535-48. https://doi.org/10.1056/NEJMra023001
  34. Qian XF, Yang GH, Yin CY, Chen X, Shen YF (2012). Research advances on correlation of ARID5B gene with childhood acute lymphoblastic leukemia - review. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 20, 1280-3 (in Chinese).
  35. Ross JA, Linabery AM, Blommer CN, et al (2013). Genetic variants modify susceptibility to leukemia in infants: a Children's Oncology Group report. Pediatr Blood Cancer, 60, 31-4. https://doi.org/10.1002/pbc.24131
  36. Rudant J, Orsi L, Bonaventure A, et al (2013). Are ARID5B and IKZF1 polymorphisms also associated with childhood acute myeloblastic leukemia: the ESCALE study (SFCE)? Leukemia, 27, 746-8. https://doi.org/10.1038/leu.2012.244
  37. Sherborne AL, Houlston RS (2010). What are genomewide association studies telling us about B-cell tumor development? Oncotarget, 1, 367-72.
  38. Shi Q, Pavey ES, Carter RE (2012). Bonferroni-based correction factor for multiple, correlated endpoints. Pharm Stat, 11, 300-9. https://doi.org/10.1002/pst.1514
  39. Stang A (2010). Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol, 25, 603-5. https://doi.org/10.1007/s10654-010-9491-z
  40. Trevino LR, Yang W, French D, et al (2009). Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet, 41, 1001-5. https://doi.org/10.1038/ng.432
  41. Trikalinos TA, Salanti G, Khoury MJ, Ioannidis JP (2006). Impact of violations and deviations in Hardy-Weinberg equilibrium on postulated gene-disease associations. Am J Epidemiol, 163, 300-9.
  42. Vijayakrishnan J, Sherborne AL, Sawangpanich R, et al (2010). Variation at 7p12.2 and 10q21.2 influences childhood acute lymphoblastic leukemia risk in the Thai population and may contribute to racial differences in leukemia incidence. Leuk Lymphoma, 51, 1870-4. https://doi.org/10.3109/10428194.2010.511356
  43. Wang Y, Chen J, Li J, et al (2013). Association of three polymorphisms in ARID5B, IKZF1 and CEBPE with the risk of childhood acute lymphoblastic leukemia in a Chinese population. Gene, 524, 203-7. https://doi.org/10.1016/j.gene.2013.04.028
  44. Wilsker D, Patsialou A, Dallas PB, Moran E (2002). ARID proteins: a diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development. Cell Growth Differ, 13, 95-106.
  45. Xu H, Cheng C, Devidas M, et al (2012). ARID5B genetic polymorphisms contribute to racial disparities in the incidence and treatment outcome of childhood acute lymphoblastic leukemia. J Clin Oncol, 30, 751-7. https://doi.org/10.1200/JCO.2011.38.0345
  46. Xu H, Yang W, Perez-Andreu V, et al (2013). Novel susceptibility variants at 10p12.31-12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations. J Natl Cancer Inst, 105, 733-42. https://doi.org/10.1093/jnci/djt042
  47. Yang W, Trevino LR, Yang JJ, et al (2010). ARID5B SNP rs10821936 is associated with risk of childhood acute lymphoblastic leukemia in blacks and contributes to racial differences in leukemia incidence. Leukemia, 24, 894-6. https://doi.org/10.1038/leu.2009.277
  48. Yang YB, Shang YH, Tan YL, et al (2014) . Methylenetetrahydrofolate reductase polymorphisms and susceptibility to esophageal cancer in Chinese populations: a meta-analysis. Asian Pac J Cancer Prev, 15, 1345-9. https://doi.org/10.7314/APJCP.2014.15.3.1345

Cited by

  1. Downregulation of SATB1 increases the invasiveness of Jurkat cell via activation of the WNT/β-catenin signaling pathway in vitro vol.37, pp.6, 2016, https://doi.org/10.1007/s13277-015-4638-x
  2. Regional evaluation of childhood acute lymphoblastic leukemia genetic susceptibility loci among Japanese vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-017-19127-7