DOI QR코드

DOI QR Code

Apoptotic effect of Pseudomonas aeruginosa exotoxin A in human tongue squamous cell carcinoma(SCC) 25 cells

Pseudomonas aeruginosa exotoxin A(PEA)가 사람혀 편평암종세포에서 나타나는 세포자멸사 작용

  • Choi, Byul Bo-Ra (Department of Dental Hygiene, Dongseo University) ;
  • Kim, Gyoo-Cheon (Department of Oral Anatomy, School of Dentistry, Pusan National University)
  • 최별보라 (동서대학교 치위생학과) ;
  • 김규천 (부산대학교 치의학전문대학원 구강해부학교실)
  • Received : 2014.04.17
  • Accepted : 2014.08.11
  • Published : 2014.08.30

Abstract

Objectives : The purpose of the study is to examine the apoptotic effects of Pseudomonas aeruginosa exotoxin A(PEA) in squamous cell carcinoma(SCC) 25 cells. Methods : Cell growth reduction and apoptosis induced by PEA were confirmed by WST-1 assay, Hoechst 33258 staining, flow cytometry analysis, and Western blot assay. Results : The PEA treatment decreased the cell viability in a dose and time dependent manner: control; $100{\pm}0^e$(p<0.01), 0.1875 nM; $87{\pm}4.36^d$(p<0.01), 0.375 nM; $82{\pm}0.58^d$(p<0.01), 0.75 nM; $72{\pm}1.67^c$(p<0.01), 1.5 nM; $51{\pm}1.53^{bc}$(p<0.01), 7.5 nM; $31{\pm}1.20^{ab}$(p<0.01), 15 nM; $26{\pm}0.67^a$(p<0.01), control; $100{\pm}0^a$(p<0.05), 24 h; $51{\pm}1.53^b$(p<0.05), 48 h; $16{\pm}0.5^c$(p<0.05), 72 h; $12{\pm}1.67^d$%(p<0.05). The PEA was observed on SCC 25 cells with the half maximal inhibitory concentration(IC50) value of 1.5 nM at 24 hours. The PEA treated SCC 25 cells demonstrated several types of apoptotic indications, such as nuclear condensation, the increase of sub G1, and the cleavage of PARP-1 and DFF 45. Conclusions : PEA showed anti-cancer activity against SCC 25 cells via apoptosis. PEA may potentially contribute to human oral cancer treatment.

Keywords

References

  1. Lee SS, Lee SK. Molecular cloning of novel genes from subtracted cDNA library or oral squamous cell carcinoma. Korean J Oral Maxillofac Pathol 2001; 25(3): 225-41.
  2. Sasahira T, Kirita T, Kuniyasu H. Update of molecular pathobiology in oral cancer: a review. Int J Clin Oncol 2014 Epub ahead of print.
  3. Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. Am J Med Sci 1893; 105: 487-11. https://doi.org/10.1097/00000441-189305000-00001
  4. Lundin JI, Checkoway H. Endotoxin and cancer. Environ Health Perspect 2009; 117(9): 1344-50. http://dx.doi.org/10.1289/ehp.0800439.
  5. Fillon S, Lang F, Jendrossek V. Pseudomonas aeruginosa triggered apoptosis of human epithelial cells depends on the temperature during infection. Cell Physiol Biochem 2002; 12(4): 207-14. https://doi.org/10.1159/000066280
  6. Sharma AK, FitzGerald D. Pseudomonas exotoxin kills drosophila S2 cells via apoptosis. Toxicon 2010; 56(6): 1025-34. http://dx.doi.org/10.1016/j.toxicon. 2010.07.007.
  7. Chang JH, Kwon HY. Expression of 14-3-3delta, cdc2 and cyclin B proteins related to exotoxin A-induced apoptosis in HeLa S3 cells. Int Immunopharmacol 2007; 7(9): 1185-91. https://doi.org/10.1016/j.intimp.2007.05.001
  8. Behdani M, Zeinali S, Karimipour M, Khanahmad H, Schoonooghe S, Aslemarz A, Seyed N, Moazami-Godarzi R, Baniahmad F, Habibi-Anbouhi M, Hassanzadeh-Ghassabeh G, Muyldermans S. Development of VEGFR2-specific Nanobody Pseudomonas exotoxin A conjugated to provide efficient inhibition of tumor cell growth. N Biotechnol. 2013; 30(2): 205-9. http://dx.doi.org/10.1016/j.nbt.2012.09.002.
  9. Jenkins CE, Swiatoniowski A, Issekutz AC, Lin TJ. Pseudomonas aeruginosa exotoxin A induces human mast cell apoptosis by a caspase-8 and -3-dependent mechanism. J Biol Chem. 2004; 279(35): 37201-7. https://doi.org/10.1074/jbc.M405594200
  10. Lim JH, Lee HJ, Lee EO, Lee HJ, Kwon HY Shim BS, et al. Apoptotic effect of vitisin A from vitis amurensis against MES-SA uterine cancer cells. Korean J Oriental Physiology & Pathology 2008; 22(2): 290-5.
  11. Yang HS, Kim JY, Lee JH, Lee BW, Park KH, Shim KH, et al. Celastrol isolated from tripterygium regelii induces apoptosis through both caspase-dependent and -independent pathways in human breast cancer cells. Food Chem Toxicol 2011; 49(2): 527-32. http://dx.doi.org/10.1016/j.fct.2010.11.044.
  12. Verma M, Singh SK, Bhushan S, Sharma VK, Datt P, Kapahi BK, et al. In vitro cytotoxic potential of polyalthia longifolia on human cancer cell lines and induction of apoptosis through mitochondrial-dependent pathway in HL-60 cells. Chem Biol Interact 2008; 171(1): 45-56. https://doi.org/10.1016/j.cbi.2007.08.010
  13. Chen L, Gong MW, Peng ZF, Zhou T, Ying MG, Zheng QH, et al. The marine fungal metabolite, dicitrinone B, induces A375 cell apoptosis through the ROS-related caspase pathway. Mar Drugs 2014; 12(4): 1939-58. http://dx.doi.org/10.3390/md12041939.
  14. Thangam R, Senthilkumar D, Suresh V, Sathuvan M, Sivasubramanian S, Pazhanichamy K, et al. Induction of ROS-dependent mitochondria mediated intrinsic apoptosis in MDA-MB-231 cells by glycoprotein from codium decorticatum. Agric Food Chem 2014. Epub ahead of print.
  15. Cheng TC, Lu JF, Wang JS, Lin LJ, Kuo HI, Chen BH. Antiproliferation effect and apoptosis mechanism of prostate cancer cell PC-3 by flavonoids and saponins prepared from Gynostemma pentaphyllum. J Agric Food Chem 2011; 59(20): 11319-29. http://dx.doi.org/10.1021/jf2018758.
  16. Olszewska P, Szymanski J, Mikiciuk-Olasik E, Szymanski P. New cyclopentaquinoline derivatives with fluorobenzoic acid induce G1 arrest and apoptosis in human lung adenocarcinoma cells. Eur J Pharmacol 2014; 15(729): 30-6. http://dx.doi.org/10.1016/j.ejphar.2014.02.003.
  17. Koo HM, VanBrocklin M, McWilliams MJ, Leppla SH, Duesbery NS, Vande Woude GF. Apoptosis and melanogenesis in human melanoma cells induced by anthrax lethal factor inactivation of mitogen-activated protein kinase kinase. Proc Natl Acad Sci U S A 2002; 99(5): 3052-7. https://doi.org/10.1073/pnas.052707699
  18. Bhattacharjee RN, Park KS, Uematsu S, Okada K, Hoshino K, Takeda K, et al. Escherichia coli verotoxin 1 mediates apoptosis in human HCT116 colon cancer cells by inducing overexpression of the GADD family of genes and S phase arrest. FEBS Lett 2005; 579(29): 6604-10. https://doi.org/10.1016/j.febslet.2005.10.053
  19. Punj V, Bhattacharyya S, Saint-Dic D, Vasu C, Cunningham EA, Graves J, et al. Bacterial cupredoxin azurin as an inducer of apoptosis and regression in human breast cancer. Oncogene 2004; 23(13): 2367-78. https://doi.org/10.1038/sj.onc.1207376
  20. Yuan K, Sun Y, Zhou T, McDonald J, Chen Y. PARP-1 regulates resistance of pancreatic cancer to TRAIL therapy. Clin Cancer Res 2013; 19(17): 4750-9. http://dx.doi.org/10.1158/1078-0432.
  21. Sodhi RK, Singh N, Jaggi AS. Poly(ADP-ribose) polymerase-1 (PARP-1) and its therapeutic implications. Vascul Pharmacol 2010; 53(3-4): 77-87. http://dx.doi.org/ 10.1016/j.vph.2010.06.003.
  22. Boulares AH, Zoltoski AJ, Sherif ZA, Yakovlev A, Smulson ME. Roles of DNA fragmentation factor and poly(ADP-ribose) polymerase-1 in sensitization of fibroblasts to tumor necrosis factor-induced apoptosis. Biochem Biophys Res Commun 2002; 290(2): 796-801. https://doi.org/10.1006/bbrc.2001.6280
  23. Rao PV, Jayaraj R, Bhaskar AS, Kumar O, Bhattacharya R, Saxena P, et al. Mechanism of ricin-induced apoptosis in human cervical cancer cells. Biochem Pharmacol 2005; 69(5): 855-65. https://doi.org/10.1016/j.bcp.2004.11.010