DOI QR코드

DOI QR Code

Tissue Mimicking Phantom for Visualization of Temperature Elevation Caused by Ultrasound

초음파에 의한 온도상승 가시화용 생체 모의매질

  • Received : 2014.06.18
  • Accepted : 2014.07.28
  • Published : 2014.09.30

Abstract

To probe the temperature elevation effect caused by ultrasound, a tissue mimicking phantom was newly suggested. A carrageenan gel was adopted to realize not only the required transparency for visualization but also acoustic characteristics similar to human tissue. To visualize the temperature elevation inside phantom, thermochromic film with a critical temperature of discoloration was introduced. Acoustic characteristics of the tissue mimicking phantom were examined when the concentrations of carrageenan and sucrose changed. As the results, the attenuation coefficient of the phantom could be controlled in the range of 0.44~0.49 dB/cm/MHz, and the acoustic impedance in the range of 1.52~1.77 Mrayls. We could control the acoustic characteristics of the phantom by different concentration of carrageenan and sucrose, and it was possible to examine the temperature elevation caused by ultrasound in the phantom. The suggested method was verified by noninvasively visualizing the temperature elevation due to planar and focused ultrasound using the fabricated phantom.

초음파에 의한 온도상승효과를 조사하기 위한 생체 모의매질을 제안하였다. 생체와 유사한 음향특성을 가지며 내부온도분포의 관찰이 가능한 투명도를 확보하기 위하여 카라기난(carrageenan) 젤을 선택하였다. 매질 내부의 온도상승효과를 가시화 하기 위하여 온도에 따라 변색되는 시온필름을 사용하였으며 카라기난의 농도 및 첨가제로 사용한 수크로스(sucrose)의 농도에 따른 생체 모의매질의 음향특성을 조사하였다. 그 결과, 카라기난 및 수크로스의 농도를 조절함으로써 음향감쇠계수를 0.44~0.49 dB/cm/MHz의 범위에서 제어할 수 있었으며 음향임피던스의 경우 1.52~1.77 Mrayls의 범위에서 제어가능함을 확인했다. 제안된 생체 모의매질은 첨가제 및 카라기난의 농도에 따라 생체조직에 대응되는 음향특성을 갖도록 제어할 수 있었으며 초음파에 의한 매질내부의 온도상승 관찰이 가능하였다. 제안된 모의매질을 이용하여 평면 및 집속 초음파에 의한 온도상승효과를 비침습적으로 가시화하여 확인함으로써 본 제안법의 유효성을 검증하였다.

Keywords

References

  1. J. Lehmann, "The biophysical basis of biologic ultrasonic reactions with special reference to ultrasonic Therapy," Arch. Phys. Med. Rehabil. 34, 139-151 (1953).
  2. W. Fry, W. Mosberg, J. Barnard, and F. Fry, "Production of focal destructive lesions in the central nervous system with ultrasound," J. Neurosurg. 11, 471-478 (1954). https://doi.org/10.3171/jns.1954.11.5.0471
  3. F. Kremkau, "Cancer therapy with ultrasound: A historical review," J. Clin. Ultrasound 7, 287-300 (1979). https://doi.org/10.1002/jcu.1870070410
  4. J. Quistgaard, "Signal acquisition and processing in medical diagnostic ultrasound," IEEE Signal Process. Mag. 14, 67-74 (1997). https://doi.org/10.1109/79.560325
  5. D. Miller, N. Smith, M. Bailey, G. Czarnota, K. Hynynen, and I. Makin, "Overview of therapeutic ultrasound applications and safety considerations," J. Ultrasound Med. 31, 623-634 (2012). https://doi.org/10.7863/jum.2012.31.4.623
  6. K. Maeda and A. Kurjak, "The safety use of diagnostic ultrasound in obstetrics and gynecology," Donald School Journal of Ultrasound in obstetrics and gynecology 6, 313-317 (2012). https://doi.org/10.5005/jp-journals-10009-1254
  7. K. Meada and M. Ide, "The limitation of the ultrasound intensity for diagnostic devices in the Japanese industrial standards," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 241-244 (1986). https://doi.org/10.1109/T-UFFC.1986.26820
  8. D. Miller, "Diagnostic ultrasound-induced membrane damage in phagocytic cells loaded with contrast agent and its relation to doppler-mode images," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 1094-1102 (2002). https://doi.org/10.1109/TUFFC.2002.1026021
  9. J. Jakobsen, R. Oyen, H. Thomsen, and S. Morcos, "The safety of ultrasound contrast agents," Eur. Radiol. 15, 941-945 (2005). https://doi.org/10.1007/s00330-004-2601-0
  10. S. Sapareto and W. Dewey, "Thermal dose determination in cancer therapy," Int. J. Radiat. Oncol. Biol. Phys. 10, 787-800 (1984). https://doi.org/10.1016/0360-3016(84)90379-1
  11. T. Samulski, W. Grant, J. Oleson, K. Leopold, M. Dewhirst, P. Vallario, and J. Blivin, "Clinical experience with a multielement ultrasonic hyperthermia system: analysis of treatment temperatures," Int. J. Hyperthermia 6, 909-922 (1990). https://doi.org/10.3109/02656739009140972
  12. K. Hynynen, A. Chung, V. Colucci, and F. Jolesz, " Potential adverse effects of high-intensity focused ultrasound exposure on blood vessels in vivo," Ultrasound Med. Biol. 22, 193-201 (1996). https://doi.org/10.1016/0301-5629(95)02044-6
  13. J. Kennedy, G. Ter Haar, and D. Cranston, "High intensity focused ultrasound: surgery of the future?," Br. J. Radiol. 76, 590-599 (2003). https://doi.org/10.1259/bjr/17150274
  14. H. Klingler, M. Susani, R. Seip, J. Mauermann, N. Sanghvi, and M. Marberger "A novel approach to energy ablative therapy of small renal tumours: laparoscopic high-intensity focused ultrasound," Eur. Urol. 53, 810-816 (2008). https://doi.org/10.1016/j.eururo.2007.11.020
  15. D. Gebauer, E. Mayr, E. Orthner, and J. Ryaby, " Low-intensity pulsed ultrasound: effects on nonunions," Ultrasound Med. Biol. 31, 1391-1402 (2005). https://doi.org/10.1016/j.ultrasmedbio.2005.06.002
  16. C. Simon, P. VanBaren, and E. S. Ebbini, "Two-dimensional temperature estimation using diagnostic ultrasound," IEEE Trans. Ultrason. Ferroelectr Freq. Control 45, 1088-1099 (1998). https://doi.org/10.1109/58.710592
  17. J. Wu and G. Du, "Temperature elevation generated by a focused gaussian beam of ultrasound," Ultrasound Med. Biol. 16, 489-498 (1990). https://doi.org/10.1016/0301-5629(90)90171-8
  18. D. Ellis and W. O'Brien Jr., "The Monopole-source solution for estimating tissue temperature increases for focused ultrasound fields," IEEE Trans. Ultrason. Ferroelectr Freq. Control 43, 88-97 (1996). https://doi.org/10.1109/58.484468
  19. W. Nyborg, "Heat generation by ultrasound in a relaxing medium," J. Acoust. Soc. Am. 70, 310-312 (1981). https://doi.org/10.1121/1.386778
  20. R. Seip R and E. Ebbini, "Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound," IEEE Trans. Biomed. Eng. 42, 828-839 (1995). https://doi.org/10.1109/10.398644
  21. N. Miller, J. Bamber, and P. Meaney, "Fundamental limitations of noninvasive temperature imaging by means of ultrasound echo strain estimation," Ultrasound Med. Biol. 28, 1319-1333 (2002). https://doi.org/10.1016/S0301-5629(02)00608-7
  22. A. Anand, D. Savery, and C. Hall, "Three-dimensional spatial and temporal temperature imaging in gel phantoms using backscattered ultrasound," IEEE Trans. Ultrason. Ferroelectr Freq. Control 54, 23-31 (2007). https://doi.org/10.1109/TUFFC.2007.208
  23. K. Ju and H. Liu, "Zero-crossing tracking technique for noninvasive ultrasonic temperature estimation," J. Ultrasound Med. 29, 1607-1615 (2010). https://doi.org/10.7863/jum.2010.29.11.1607
  24. J. Browne, K. Ramnarine, A. Watson, and P. Hoskins, "Assessment of the acoustic properties of common tissuemimicking test phantoms," Ultrasound Med. Biol. 29, 1053-1060 (2003). https://doi.org/10.1016/S0301-5629(03)00053-X
  25. C. Lafon, V. Zderic, M. Noble, J. Yuen, P. Kaczkowski, O. Sapozhnikov, F. Chavrier, L. Crum, and S. Vaezy, "Gel phantom for use in high-intensity focused ultrasound dosimetry," Ultrasound Med. Biol. 31, 1383-1389 (2005). https://doi.org/10.1016/j.ultrasmedbio.2005.06.004
  26. H. Elizabeth, A. Partanen, G. Karczmar, and X. Fan, "Safety limitations of MR-HIFU treatment near interfaces: a phantom validation," J. Appl. Clin. Med. Phys. 13, 168-175 (2012). https://doi.org/10.1120/jacmp.v13i2.3739
  27. M. Choi, S. Guntur, K. Lee, D. Paeng, and A. Coleman, "A tissue mimicking polyacrylamide hydrogel phantom for visualizing thermal lesions generated by high intensity focused ultrasound," Ultrasound Med. Biol. 39, 439-448 (2013). https://doi.org/10.1016/j.ultrasmedbio.2012.10.002
  28. J. Kim, M. Kim, and K. Ha, "Visualization of thermal distribution caused by focused ultrasound field in an agar phantom," Jpn. J. Appl. Phys. 50, 07HC08 (2011). https://doi.org/10.7567/JJAP.50.07HC08
  29. J. Kim, M. Kim, Y. Park, and K. Ha, "Acoustic characteristics of a tissue mimicking phantom for visualization of thermal distribution," Jpn. J. Appl. Phys. 51, 07GB10 (2012). https://doi.org/10.7567/JJAP.51.07GB10
  30. Myoungseok Kim, Jungsoon Kim, Moojoon Kim, and Kanglyeol Ha, "Visualization method of temperature elevation due to focused ultrasound in dissipative acoustic medium" (in Korean), J. Acoust. Soc. Kr. 33, 21-30 (2014). https://doi.org/10.7776/ASK.2014.33.1.021
  31. FAO Agar and Carrageenan Manual. Fao.org (1965-01-01). Retrieved on 2011-12-10.
  32. GENU Carrageenan book, cpkelco, www.cpkelco.com.
  33. L. Kinsler, S. Frey, A. Coppens, and J. Sanders, Fundamentals of Acoustics (John Wiley & Sons, New York, 2000), pp. 526.
  34. T. Mast, "Empirical relationships between acoustic parameters in human soft tissues," J. Acoust. Soc. Am. 1, 37-42 (2000).