DOI QR코드

DOI QR Code

Effect of Bisphenol A on Early Embryonic Development and the Expression of Glutathione S-transferase (GST) in the Sea Urchin (Hemicentrotus pulcherrimus)

말똥성게(Hemicentrotus pulcherrimus)의 초기배아 발생과 glutathione S-transferase (GST)의 발현에 대한 bisphenol A의 영향

  • Hwang, Un-Ki (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Kim, Dae-Han (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Ryu, Hyang-Mi (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Lee, Ju-Wook (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Park, Seung-Yoon (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Kang, Han Seung (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center)
  • 황운기 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 김대한 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 류향미 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 이주욱 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 박승윤 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 강한승 (국립수산과학원 서해수산연구소 해양생태위해평가센터)
  • Received : 2014.06.13
  • Accepted : 2014.09.12
  • Published : 2014.09.30

Abstract

In this study, gametotoxicity and embryotoxicity experiments using Hemicentrotus pulcherrimus were carried out to investigate the ecotoxicological effects of bisphenol A (BPA). We examined the effects of BPA on fertilization and normal embryogenesis at various concentrations (0, 300, 500, 800, 1000, and 1500 ppb). The results demonstrated that the fertilization rates were not changed. The normal embryogenesis rates were gradually decreased in a dose-dependent manner, and were significantly lowered following 800 ppb BPA treatment ($EC_{50}$=1056.1 ppb, 95% Cl=981.8~1163.9 ppb). The observed effective concentration and the lowest observed effective concentration of the normal embryogenesis rate were 500 ppb and 800 ppb, respectively. The embryos showed retarded development at each tested concentration, indicating the fact the embryonic development was delayed due to the increasing concentrations of BPA. Furthermore, we examined the expression of glutathione S-transferase (GST) mRNA at various concentrations of BPA in H. pulcherrimus. Interestingly, it was found that the expression level of GST mRNA was significantly increased in the experimental group exposed to BPA. Based on these results, we suggested that BPA at greater than 800 ppb has a toxic effect during the early embryonic stages of H. pulcherrimus, and GST mRNA may be used as a biomarker for risk assessment of BPA contamination.

본 연구는 시험생물로서 말똥성게 (Hemicentrotus pulcherrimus)를 이용하여 내분비계장애물질인 bisphenol A(BPA)의 독성 및 시험생물로서의 적합성 등을 조사하였다. 말똥성게(H. pulcherrimus)의 수정 및 정상 배아발생에 미치는 BPA의 독성을 보기 위하여 농도(0, 300, 500, 800, 1000, 1500 ppb)에서 조사하였다. BPA 노출 시 수정률은 시험구간 내의 BPA 처리농도와 관계없이 유의적인 변화가 없었다. 정상 배아발생률은 BPA 농도가 높을수록 유의적인 감소를 나타냈으며, 800 ppb 농도부터 유의적인 감소를 보였다. 정상배아발생에 대한 독성값은 반수영향농도 ($EC_{50}$) 1056.1 ppb, 95% Cl 981.8~1163.9 ppb로 나타났다. 또한 무영향농도 (NOEC)와 최소영향농도(LOEC)는 500 ppb 및 800 ppb로 나타났다. BPA에 노출된 배아는 농도가 증가함에 따라 발생이 정체되는 현상이 나타났다. BPA에 노출된 pluteus 유생을 이용한 glutathione-S-transferase (GST) 유전자의 발현을 비교해본 결과 GST 유전자의 발현은 농도가 증가함에 따라 발현이 증가하였다. 본 연구 결과, 말똥성게 (H. pulcherrimus)의 초기 배아 발생 과정 중 800 ppb 이상에서 독성을 나타냈으며 GST 유전자는 BPA 노출에 따른 위해성 평가에 생체지표유전자로 유용하게 이용될 수 있다고 생각된다.

Keywords

References

  1. Agrawal GK, NS Jwa and R Rakwal. 2002. A pathogen-induced novel rice (Oryza sativa L.) gene encodes a putative protein homologous to type II glutathione S-transferases. Plant Sci. 163:1153-1160. https://doi.org/10.1016/S0168-9452(02)00331-X
  2. Aluru N, JF Leatherland and MM Vijayan. 2010. Bisphenol A in oocyte leads to growth suppression and altered stress performance in juvenile rainbow trout. PLoS One 5:e10741. https://doi.org/10.1371/journal.pone.0010741
  3. Brotons JA, MF Olea-Serrano, M Villalobos, V Pedraza and N Olea. 1995. Xenoestrogens released from lacquer coatings in food cans. Environ. Health Persp. 103:608-612. https://doi.org/10.1289/ehp.95103608
  4. Cho HS, YO Kim, TS Shin and T Horiguchi. 2004. A study on the pollution of bisphenol A in surface sediment around Gwangyang bay. Journal of the Korean Society for Marine Environment & Energy 7:104-110.
  5. Davidson EH, RA Cameron and A Ransick. 1998. Specification of cell fate in the sea urchin embryo: Summary and some proposed mechanisms. Development 125:3269-3290.
  6. Greenwood PJ. 1983. The influence of an oil dispersant chemserve OSE-DH on the viability of sea urchin gametes. Combined effects of temperature, concentration and exposure time on fertilization. Aquat. Toxicol. 4:15-29. https://doi.org/10.1016/0166-445X(83)90058-9
  7. Groshart CP, PC Okkerman and AMCM Pijnenburg. 2001. Chemical study on bisphenol A, Ministerie van Verkeer en Waterstaat, Directoraat-Generaal Rijkswaterstaat Rijksinstituut voor Kust en Zee/RIKZ. Report: RIKZ/2001.027. pp.65-70.
  8. Herman-Giddens ME, EJ Slora, RC Wasserman, CJ Bourdony, MV Bhapkar, GG Koch and CM Hasemeier. 1997. Secondary sexual characteristics and menses in young girls seen in office practice: a study from the pediatric research in office settings network. Pediatrics 99:505-512. https://doi.org/10.1542/peds.99.4.505
  9. Howdeshell KL, AK Hotchkiss, KA Thayer, JG Vandenbergh and FS vom Saal. 1999. Exposure to bisphenol A advances puberty. Nature 401:763-764. https://doi.org/10.1038/44517
  10. Hwang UK, JS Park, JN Kwon, S Heo, Y Oshima and HS Kang. 2012. Effect of nickel on embryo development and expression of metallothionein gene in the sea urchin (Hemicentrotus pulcherrimus). J. Fac. Agr., Kyushu Univ. 57:145-149.
  11. Jemec A, T Tisler, B Erjavec and A Pintar. 2012. Antioxidant responses and whole-organism changes in Daphnia magna acutely and chronically exposed to endocrine disruptor bisphenol A. Ecotoxicol. Environ. Safe. 86:213-218. https://doi.org/10.1016/j.ecoenv.2012.09.016
  12. Kampranis SC, R Damianova, M Atallah, G Toby, G Kondi, PN Tsichlis and AM Makris. 2000. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J. Biol. Chem. 275:29207-29216. https://doi.org/10.1074/jbc.M002359200
  13. Khim JS, DL Villeneuve, K Kannan, KT Lee, SA Snyder, CH Koh and JP Giesy. 1999. "Characterization and distribution of trace organic contaminants in sediment from Masan bay, Korea. 1. Instrumental analysis". Environ. Sci. Technol. 33:4199-4205. https://doi.org/10.1021/es9904484
  14. Kim HY. 1997. Toxic effects of phenol on survival and oxygen consumption of the abalone juvenile, Haliotis discus hannai. J. Korean Fish. Soc. 30:496-504.
  15. Kim EK, J Ryu, SY Park, HM Kim, KS Choi, JG Na and C Lee. Endocrine disrupting effects of bisphenol A on the early life-stage of medaka (Oryzias latipes). J. Environ. Toxicol. 20:13-21.
  16. Kobayashi N. 1973. Studies on the effects of some agents on fertilized sea urchin eggs, as a part of the bases for marine pollution bioassay I. Publ. Seto. Mar. Biol. Lab. 21:109-114. https://doi.org/10.5134/175805
  17. Kobayashi N. 1977. Preliminary experiments with sea urchin pluteus and metamorphosis in marine pollution bioassay. Publ. Seto. Mar. Biol. Lab. 24:9-21. https://doi.org/10.5134/175965
  18. Kobayashi N. 1981. Comparative toxicity of various chemicals, oil extracts and oil dispersant to Canadian and Japanese sea urchin eggs. Publ. Seto. Mar. Biol. Lab. 27:76-84.
  19. Koutsogiannaki S, S Franzellitti, E Fabbri and M Kaloyianni. 2014. Oxidative stress parameters induced by exposure to either cadmium or 17 beta estradiol on Mytilus galloprovincialis hemocytes. The role of signaling molecules. Aquat. Toxicol. 146:186-195. https://doi.org/10.1016/j.aquatox.2013.11.005
  20. Lemaire P, A Matthews, L Forlin and DR Livingstone. 1994. Stimulation of oxyradical production of hepatic microsomes of flounder (Platichthys flesus) and perch (Perca fluviatilis) by model and pollutant xenobiotics. Arch. Environ. Contam. Toxicol. 26:191-200.
  21. Luchmann K, AL Dafre, R Trevisan, JA Craft, X Meng, JJ Mattos, FL Zacchi, TS Dorrington, DC Schroeder and ACD Bainy. 2014. A light in the darkness: New biotransformation genes, antioxidant parameters and tissue-specific responses in oysters exposed to phenanthrene. Aquat. Toxicol. 152:324-334. https://doi.org/10.1016/j.aquatox.2014.04.021
  22. Monroy A. 1986. A centennial debt of developmental biology to the sea urchin. Biol. Bull. 171:509-519. https://doi.org/10.2307/1541620
  23. Mueller LA, CD Goodman, RA Silady and V Walbot. 2000. AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol. 123:1561-1570. https://doi.org/10.1104/pp.123.4.1561
  24. Ozlem CA and P Hatice. 2008. Effects of bisphenol A on the embryonic development of sea urchin (Paracentrotus lividus). Environ. Toxicol. 23:387-392. https://doi.org/10.1002/tox.20349
  25. Pagono G, M Cipollaro, G Corsale, A Esposite, E Ragucciand and GG Giordano. 1985a. Ph-induced changes in mitotic and development patterns in sea urchin embryogenesis, I. Exposure of embryos. Teratogen. Carcin. Mut. 5: 101-112. https://doi.org/10.1002/tcm.1770050204
  26. Pagono G, M Cipollaro, G Corsale, A Esposite, E Ragucciand and GG Giordano. 1985b. Ph-induced changes in mitotic and development patterns in sea urchin embryogenesis, II. Exposure of sperm. Teratogen. Carcin. Mut. 5:113-121. https://doi.org/10.1002/tcm.1770050205
  27. Pagano G, M Cipollaro, G Corsale, A Esposito, E Ragucci, GG Giordino and NM Trief. 1986. The sea urchin: Bioassay for the assessment of damage from environmental contaminants. pp.66-92. In Community Toxicity Testing, ASTM STP 920. (Cairns J Jr ed.) Philadelphia: American Society for Testing and Materials.
  28. Paulozzi LJ, JD Erickson and RJ Jackson. 1997. Hypospadias trends in two US surveillance systems. Pediatrics 100:831-834. https://doi.org/10.1542/peds.100.5.831
  29. Smith AP, BP DeRidder, WJ Guo, EH Seeley, FE Regnier and PB Goldsbrough. 2004. Proteomic analysis of Arabidopsis glutathione S-transferases from benoxacor- and copper-treated seedlings. J. Biol. Chem. 279:26098-26104. https://doi.org/10.1074/jbc.M402807200
  30. Staples CA, PB Dorn, GM Klecka, ST Oblock and LR Haris. 1998. A review of the environmental fate, effects and exposures of bisphenol A. Chemosphere 36:2149-2173. https://doi.org/10.1016/S0045-6535(97)10133-3
  31. Staples CA, K Woodburn, N Caspers, AT Hall and GM Klecka. 2002. A weight of evidence approach to the aquatic hazard assessment of bisphenol A. Hum. Ecol. Risk Assess. 8:1083-1105. https://doi.org/10.1080/1080-700291905837
  32. Suzuki N, A Kambegawa and A Hattori. 2003. Bisphenol A influences the plasma calcium level and inhibits calcitonin secretion in goldfish. Zool. Sci. 20:745-748. https://doi.org/10.2108/zsj.20.745
  33. Tyl RW, CB Myers, MC Marr, BF Thomas, AR Keimowitz, DR Brine, MM Veselica, PA Fail, TY Chang, JC Seely, RL Joiner, JH Butala, SS Diamond, SZ Cagen, RN Shiotsuka, GD Stropp and JM Waechter. 2002. Three-generation reproductive toxicity study of dietary bisphenol A in CD Sprague-Dawley rats. Toxicol. Sci. 68:121-146. https://doi.org/10.1093/toxsci/68.1.121
  34. Wui IS, JB Lee and SH Yoo. 1992. Bioassay on marine sediment pollution by using sea urchin embryo culture in the south-west inland sea of Korean. J. Environ. Biol. 10:92-99.
  35. Yokota H, Y Tsuruda, M Maeda, Y Oshima, H Tadokoro, A Nakazono, T Honjo and K Kobayashi. 2000. Effect of bisphenol A on the early life stage in Japanese medaka (Oryzias latipes). Environ. Toxicol. Chem. 19:1925-1930. https://doi.org/10.1897/1551-5028(2000)019<1925:EOBAOT>2.3.CO;2
  36. Yu CM. 1998. A study on the effect of heavy metals on embryos formation of sea urchins. Kor. J. Env. Hlth. Soc. 24:6-10.
  37. Zhang H, L Pan and Y Tao. 2014. Toxicity assessment of environmental pollutant phenanthrene in clam Venerupis philippinarum using oxidative stress biomarkers. Environ. Toxicol. Pharmacol. 37:697-704. https://doi.org/10.1016/j.etap.2014.01.018