DOI QR코드

DOI QR Code

Ameliorative effect of myricetin on insulin resistance in mice fed a high-fat, high-sucrose diet

  • Choi, Ha-Neul (Department of Smart Foods and Drugs, School of Food and Life Science, Inje University) ;
  • Kang, Min-Jung (Food & Nutrition Research Team, Hurom Co., Ltd.) ;
  • Lee, Soo-Jin (Department of Smart Foods and Drugs, School of Food and Life Science, Inje University) ;
  • Kim, Jung-In (Department of Smart Foods and Drugs, School of Food and Life Science, Inje University)
  • Received : 2014.02.04
  • Accepted : 2014.06.13
  • Published : 2014.10.01

Abstract

BACKGROUND/OBJECTIVES: Obesity-associated insulin resistance is a strong risk factor for type 2 diabetes mellitus. The aim of this study was to investigate the effect of myricetin on adiposity, insulin resistance, and inflammatory markers in mice with diet-induced insulin resistance. MATERIALS/METHODS: Five-week-old male C57BL/6J mice were fed a basal diet, a high-fat, high-sucrose (HFHS) diet, or the HFHS diet containing 0.06% myricetin or 0.12% myricetin for 12 weeks after a 1-week adaptation, and body weight and food intake were monitored. After sacrifice, serum lipid profiles, glucose, insulin, adipocyte-derived hormones, and proinflammatory cytokines were measured. The homeostasis model assessment for insulin resistance (HOMA-IR) was determined. RESULTS: Myricetin given at 0.12% of the total diet significantly reduced body weight, weight gain, and epidydimal white adipose tissue weight, and improved hypertriglyceridemia and hypercholesterolemia without a significant influence on food intake in mice fed the HFHS diet. Serum glucose and insulin levels, as well as HOMA-IR values, decreased significantly by 0.12% myricetin supplementation in mice fed the HFHS diet. Myricetin given at 0.12% of the total diet significantly reduced serum levels of leptin, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) in mice fed the HFHS diet. CONCLUSIONS: These findings suggest that myricetin may have a protective effect against diet-induced obesity and insulin resistance in mice fed HFHS diet, and that alleviation of insulin resistance could partly occur by improving obesity and reducing serum proinflammatory cytokine levels.

Keywords

References

  1. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA, Rao M, Ali MK, Riley LM, Robinson CA, Ezzati M; Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose). National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 2011;378:31-40. https://doi.org/10.1016/S0140-6736(11)60679-X
  2. Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 1999;104:787-94. https://doi.org/10.1172/JCI7231
  3. Lebovitz HE. Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes 2001;109 Suppl 2:S135-48. https://doi.org/10.1055/s-2001-18576
  4. Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K, Nissen M, Taskinen MR, Groop L. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 2001;24:683-9. https://doi.org/10.2337/diacare.24.4.683
  5. Garg A, Grundy SM. Management of dyslipidemia in NIDDM. Diabetes Care 1990;13:153-69. https://doi.org/10.2337/diacare.13.2.153
  6. Lebovitz HE. Treating hyperglycemia in type 2 diabetes: new goals and strategies. Cleve Clin J Med 2002;69:809-20. https://doi.org/10.3949/ccjm.69.10.809
  7. Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev 2007;21:1443-55. https://doi.org/10.1101/gad.1550907
  8. Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav 2008;94:206-18. https://doi.org/10.1016/j.physbeh.2007.10.010
  9. Ostlund RE Jr, Yang JW, Klein S, Gingerich R. Relation between plasma leptin concentration and body fat, gender, diet, age, and metabolic covariates. J Clin Endocrinol Metab 1996;81:3909-13.
  10. Hotamisligil GS, Spiegelman BM. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 1994;43:1271-8.
  11. Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 2001;280:E745-51. https://doi.org/10.1152/ajpendo.2001.280.5.E745
  12. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001;86:1930-5. https://doi.org/10.1210/jcem.86.5.7463
  13. Sheng T, Yang K. Adiponectin and its association with insulin resistance and type 2 diabetes. J Genet Genomics 2008;35:321-6. https://doi.org/10.1016/S1673-8527(08)60047-8
  14. Tilg H, Moschen AR. Insulin resistance, inflammation, and nonalcoholic fatty liver disease. Trends Endocrinol Metab 2008;19:371-9. https://doi.org/10.1016/j.tem.2008.08.005
  15. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003;112:1821-30. https://doi.org/10.1172/JCI200319451
  16. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006;116:1494-505. https://doi.org/10.1172/JCI26498
  17. Harnly JM, Doherty RF, Beecher GR, Holden JM, Haytowitz DB, Bhagwat S, Gebhardt S. Flavonoid content of U.S. fruits, vegetables, and nuts. J Agric Food Chem 2006;54:9966-77. https://doi.org/10.1021/jf061478a
  18. Lin J, Zhang SM, Wu K, Willett WC, Fuchs CS, Giovannucci E. Flavonoid intake and colorectal cancer risk in men and women. Am J Epidemiol 2006;164:644-51. https://doi.org/10.1093/aje/kwj296
  19. Ko SY. Myricetin suppresses LPS-induced MMP expression in human gingival fibroblasts and inhibits osteoclastogenesis by downregulating NFATc1 in RANKL-induced RAW 264.7 cells. Arch Oral Biol 2012;57:1623-32. https://doi.org/10.1016/j.archoralbio.2012.06.012
  20. Kang BY, Kim SH, Cho D, Kim TS. Inhibition of interleukin-12 production in mouse macrophages via decreased nuclear factorkappaB DNA binding activity by myricetin, a naturally occurring flavonoid. Arch Pharm Res 2005;28:274-9. https://doi.org/10.1007/BF02977791
  21. Lee YS, Choi EM. Myricetin inhibits IL-1beta-induced inflammatory mediators in SW982 human synovial sarcoma cells. Int Immunopharmacol 2010;10:812-4. https://doi.org/10.1016/j.intimp.2010.04.010
  22. Liu IM, Tzeng TF, Liou SS, Lan TW. Myricetin, a naturally occurring flavonol, ameliorates insulin resistance induced by a high-fructose diet in rats. Life Sci 2007;81:1479-88. https://doi.org/10.1016/j.lfs.2007.08.045
  23. Chang CJ, Tzeng TF, Liou SS, Chang YS, Liu IM. Myricetin increases hepatic peroxisome proliferator-activated receptor ${\alpha}$ protein expression and decreases plasma lipids and adiposity in rats. Evid Based Complement Alternat Med 2012;2012:787152.
  24. Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN. Diet-induced type II diabetes in C57BL/6J mice. Diabetes 1988; 37:1163-7. https://doi.org/10.2337/diab.37.9.1163
  25. Surwit RS, Seldin MF, Kuhn CM, Cochrane C, Feinglos MN. Control of expression of insulin resistance and hyperglycemia by different genetic factors in diabetic C57BL/6J mice. Diabetes 1991;40:82-7. https://doi.org/10.2337/diab.40.1.82
  26. Schreyer SA, Vick C, Lystig TC, Mystkowski P, LeBoeuf RC. LDL receptor but not apolipoprotein E deficiency increases diet-induced obesity and diabetes in mice. Am J Physiol Endocrinol Metab 2002;282:E207-14. https://doi.org/10.1152/ajpendo.2002.282.1.E207
  27. Haffner SM, Miettinen H, Stern MP. The homeostasis model in the San Antonio Heart Study. Diabetes Care 1997;20:1087-92. https://doi.org/10.2337/diacare.20.7.1087
  28. Yang ZH, Miyahara H, Takeo J, Katayama M. Diet high in fat and sucrose induces rapid onset of obesity-related metabolic syndrome partly through rapid response of genes involved in lipogenesis, insulin signalling and inflammation in mice. Diabetol Metab Syndr 2012;4:32. https://doi.org/10.1186/1758-5996-4-32
  29. Anderson JW, Kendall CW, Jenkins DJ. Importance of weight management in type 2 diabetes: review with meta-analysis of clinical studies. J Am Coll Nutr 2003;22:331-9. https://doi.org/10.1080/07315724.2003.10719316
  30. Sato A, Kawano H, Notsu T, Ohta M, Nakakuki M, Mizuguchi K, Itoh M, Suganami T, Ogawa Y. Antiobesity effect of eicosapentaenoic acid in high-fat/high-sucrose diet-induced obesity: importance of hepatic lipogenesis. Diabetes 2010;59:2495-504. https://doi.org/10.2337/db09-1554
  31. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995;269:540-3. https://doi.org/10.1126/science.7624776
  32. Myers MG Jr, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab 2010;21:643-51. https://doi.org/10.1016/j.tem.2010.08.002
  33. Unger RH. Lipotoxic diseases. Annu Rev Med 2002;53:319-36. https://doi.org/10.1146/annurev.med.53.082901.104057
  34. Senn JJ, Klover PJ, Nowak IA, Zimmers TA, Koniaris LG, Furlanetto RW, Mooney RA. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem 2003;278:13740-6. https://doi.org/10.1074/jbc.M210689200
  35. Hajer GR, van Haeften TW, Visseren FL. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 2008;29: 2959-71. https://doi.org/10.1093/eurheartj/ehn387

Cited by

  1. α-glucosidase inhibitory activities of myricetin in animal models of diabetes mellitus vol.24, pp.5, 2015, https://doi.org/10.1007/s10068-015-0249-y
  2. Cashew apple extract inhibition of fat storage and insulin resistance in the diet-induced obesity mouse model vol.4, pp.2048-6790, 2015, https://doi.org/10.1017/jns.2015.30
  3. shoot) in animal models of diabetes mellitus vol.9, pp.3, 2015, https://doi.org/10.4162/nrp.2015.9.3.262
  4. Myricetin induces apoptosis via endoplasmic reticulum stress and DNA double-strand breaks in human ovarian cancer cells vol.13, pp.3, 2016, https://doi.org/10.3892/mmr.2016.4763
  5. 杨梅素对膳食诱导的C57BL/6 小鼠肥胖及氧化应激的干预作用 vol.17, pp.6, 2016, https://doi.org/10.1631/jzus.B1600074
  6. Herbal medicines and nonalcoholic fatty liver disease vol.22, pp.30, 2016, https://doi.org/10.3748/wjg.v22.i30.6890
  7. Modulation of leptin resistance by food compounds vol.60, pp.8, 2016, https://doi.org/10.1002/mnfr.201500964
  8. Bioactive Compounds and Their Neuroprotective Effects in Diabetic Complications vol.8, pp.8, 2016, https://doi.org/10.3390/nu8080472
  9. Integrated analysis of miRNA and mRNA expression profiles in human endothelial cells exposed to fisetin vol.11, pp.3, 2017, https://doi.org/10.1007/s13206-017-1308-7
  10. Myricetin-induced brown adipose tissue activation prevents obesity and insulin resistance in db/db mice pp.1436-6215, 2017, https://doi.org/10.1007/s00394-017-1433-z
  11. Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids vol.17, pp.4, 2016, https://doi.org/10.3390/ijms17040569
  12. Regressive Effect of Myricetin on Hepatic Steatosis in Mice Fed a High-Fat Diet vol.8, pp.12, 2016, https://doi.org/10.3390/nu8120799
  13. Leaf Extract Attenuates Hepatic Steatosis and Inflammation in High-Fat Diet-Fed Mice vol.19, pp.3, 2016, https://doi.org/10.1089/jmf.2015.3527
  14. Microbiota in obesity: interactions with enteroendocrine, immune and central nervous systems vol.19, pp.4, 2018, https://doi.org/10.1111/obr.12661
  15. Postgenomic Properties of Natural Micronutrients vol.166, pp.1, 2018, https://doi.org/10.1007/s10517-018-4298-0
  16. Hypoglycemic and hypolipidemic effects of samnamul (shoot of Aruncus dioicus var. kamtschaticus Hara) in mice fed a high-fat/high-sucrose diet vol.27, pp.5, 2018, https://doi.org/10.1007/s10068-018-0390-5
  17. (L.) Skeels Leaf on Oxidative Stress-Induced Diabetic Rats vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/5386079
  18. Effect of myricetin on primary open-angle glaucoma vol.9, pp.1, 2018, https://doi.org/10.1515/tnsci-2018-0020
  19. Myricetin Protects Against High Glucose-Induced β-Cell Apoptosis by Attenuating Endoplasmic Reticulum Stress via Inactivation of Cyclin-Dependent Kinase 5 vol.43, pp.2233-6087, 2019, https://doi.org/10.4093/dmj.2018.0052
  20. Effect of treadmill exercise on ER stress and insulin resistance in the hippocampus of high-fat diet fed rats vol.24, pp.2, 2014, https://doi.org/10.15857/ksep.2015.24.2.143
  21. Myricetin, a potent natural agent for treatment of diabetic skin damage by modulating TIMP/MMPs balance and oxidative stress vol.7, pp.44, 2014, https://doi.org/10.18632/oncotarget.12330
  22. Myricetin: biological activity related to human health vol.59, pp.2, 2014, https://doi.org/10.1007/s13765-016-0150-2
  23. Evolution of metabolic disorder in rats fed high sucrose or high fat diet: Focus on redox state and mitochondrial function vol.242, pp.None, 2014, https://doi.org/10.1016/j.ygcen.2015.10.012
  24. Solid dispersions of Myricetin with enhanced solubility: Formulation, characterization and crystal structure of stability-impeding Myricetin monohydrate crystals vol.1141, pp.None, 2017, https://doi.org/10.1016/j.molstruc.2017.04.015
  25. Abelmoschus esculentus (L.): Bioactive Components’ Beneficial Properties—Focused on Antidiabetic Role—For Sustainable Health Applications vol.24, pp.1, 2014, https://doi.org/10.3390/molecules24010038
  26. Syzygium cumini Leaf Extract Reverts Hypertriglyceridemia via Downregulation of the Hepatic XBP-1s/PDI/MTP Axis in Monosodium L-Glutamate-Induced Obese Rats vol.2019, pp.None, 2014, https://doi.org/10.1155/2019/9417498
  27. Cashew apple fiber prevents high fat diet-induced obesity in mice: an NMR metabolomic evaluation vol.10, pp.3, 2014, https://doi.org/10.1039/c8fo01575a
  28. Flavonoids Alleviating Insulin Resistance through Inhibition of Inflammatory Signaling vol.67, pp.19, 2014, https://doi.org/10.1021/acs.jafc.8b05348
  29. Supplementation of the Flavonoid Myricitrin Attenuates the Adverse Metabolic Effects of Long-Term Consumption of a High-Fat Diet in Mice vol.22, pp.11, 2019, https://doi.org/10.1089/jmf.2018.4341
  30. Protective functions of myricetin in LPS-induced cardiomyocytes H9c2 cells injury by regulation of MALAT1 vol.24, pp.24, 2014, https://doi.org/10.1186/s40001-019-0378-5
  31. The Protective Effects of Myricetin against Cardiovascular Disease vol.65, pp.6, 2014, https://doi.org/10.3177/jnsv.65.470
  32. Myricetin Abrogates Cisplatin-Induced Oxidative Stress, Inflammatory Response, and Goblet Cell Disintegration in Colon of Wistar Rats vol.9, pp.1, 2020, https://doi.org/10.3390/plants9010028
  33. Effects of Hericium erinaceus Mycelium Extracts on the Functional Activity of Purinoceptors and Neuropathic Pain in Mice with L5 Spinal Nerve Ligation vol.2020, pp.None, 2014, https://doi.org/10.1155/2020/2890194
  34. Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy vol.152, pp.None, 2014, https://doi.org/10.1016/j.phrs.2020.104629
  35. Dopaminergic Pathways in Obesity-Associated Inflammation vol.15, pp.1, 2014, https://doi.org/10.1007/s11481-019-09863-0
  36. Leptin and Nutrition in Gestational Diabetes vol.12, pp.7, 2014, https://doi.org/10.3390/nu12071970
  37. Flavonoids as antiobesity agents: A review vol.41, pp.1, 2021, https://doi.org/10.1002/med.21740
  38. Chlorogenic Acid Alleviates Colon Mucosal Damage Induced by a High-Fat Diet via Gut Microflora Adjustment to Increase Short-Chain Fatty Acid Accumulation in Rats vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/3456542
  39. Myricetin: A comprehensive review on its biological potentials vol.9, pp.10, 2021, https://doi.org/10.1002/fsn3.2513
  40. Ameliorative Effect of Myricetin on Nonalcoholic Fatty Liver Disease in ob/ob Mice vol.24, pp.10, 2021, https://doi.org/10.1089/jmf.2021.k.0090