DOI QR코드

DOI QR Code

Electron Tomography and Synapse Study

  • Kim, Hyun-Wook (Department of Anatomy, Korea University College of Medicine) ;
  • Kim, Dasom (Department of Anatomy, Korea University College of Medicine) ;
  • Rhyu, Im Joo (Department of Anatomy, Korea University College of Medicine)
  • Received : 2014.09.12
  • Accepted : 2014.09.23
  • Published : 2014.09.30

Abstract

Electron tomography (ET) is a useful tool to investigate three-dimensional details based on virtual slices of relative thick specimen, and it requires complicated procedures consisted of image acquisition steps and image processing steps with computer program. Although the complicated step, this technique allows us to overcome some limitations of conventional transmission electron microscopy: (1) overlapping of information in the ultrathin section covering from 30 nm to 90 nm when we observe very small structures, (2) fragmentation of the information when we study larger structures over 100 nm. There are remarkable biological findings with ET, especially in the field of neuroscience, although it is not popular yet. Understanding of behavior of synaptic vesicle, active zone, pooling and fusion in the presynaptic terminal have been enhanced thanks to ET. Some sophisticated models of postsynaptic density with ET and immune labeling are introduced recently. In this review, we introduce principles, practical steps of ET and some recent researches in synapse biology.

Keywords

References

  1. Burette A C, Lesperance T, Crum J, Martone M, Volkmann N, Ellisman M H, and Weinberg R J (2012) Electron tomographic analysis of synaptic ultrastructure. J. Comp. Neurol. 520, 2697-2711. https://doi.org/10.1002/cne.23067
  2. Chen X, Winters C, and Reese R (2008) Life inside a thin section: tomography. J. Neurosci. 28, 9321-9327. https://doi.org/10.1523/JNEUROSCI.2992-08.2008
  3. Fernandez-Busnadiego R, Asano S, Oprisoreanu A M, Sakata E, Doengi M, Kochovski Z, Zurner M, Stein V, Schoch S, Baumeister W, and Lucic V (2013) Cryo-electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering. J. Cell Biol. 201, 725-740. https://doi.org/10.1083/jcb.201206063
  4. Fernandez-Busnadiego R, Schrod N, Kochovski Z, Asano S, Vanhecke D, Baumeister W, and Lucic V (2011) Insights into the molecular organization of the neuron by cryo-electron tomography. J. Electron Microsc. (Tokyo) 60 Suppl 1, S137-S148. https://doi.org/10.1093/jmicro/dfr018
  5. Fernandez-Busnadiego R, Zuber B, Maurer U, Cyrklaff M, Baumeister W, and Lucic V (2010) Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography. J. Cell Biol. 188, 145-156. https://doi.org/10.1083/jcb.200908082
  6. Frey T G, Perkins G A, and Ellisman M H (2006) Electron tomography of membrane-bound cellular organelles. Annu. Rev. Biophys. Biomol. Struct. 35, 199-224. https://doi.org/10.1146/annurev.biophys.35.040405.102039
  7. Jou H T, Lee S, and Kim H J (2013) Improvement of alignment accuracy in electron tomography. Appl. Microsc. 43, 1-8. https://doi.org/10.9729/AM.2013.43.1.1
  8. Kim H W, Oh S H, Kim N, Nakazawa E, and Rhyu I J (2013) Rapid method for electron tomographic reconstruction and three-dimensional modeling of the murine synapse using an automated fiducial markerfree system. Microsc. Microanal. 19 Suppl 5, 182-187.
  9. Kim J W, Lee S J, and Rhyu I J (2007) Construction of anaglyphic stereo pair image using Adobe Photoshop program. Korean J. Microsc. 37, 143-146.
  10. Landis D, Hall A, Weinstein L, and Reese T (1988) The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron 1, 201-209. https://doi.org/10.1016/0896-6273(88)90140-7
  11. Lee K J, Kim H, Kim T S, Park S H, and Rhyu I J (2004) Morphological analysis of spine shapes of Purkinje cell dendrites in the rat cerebellum using high-voltage electron microscopy. Neurosci. Lett. 359, 21-24. https://doi.org/10.1016/j.neulet.2004.01.071
  12. Lucic V, Kossel A H, Yang T, Bonhoeffer T, Baumeister W, and Sartori A (2007) Multiscale imaging of neurons grown in culture: from light microscopy to cryo-electron tomography. J. Struct. Biol. 160, 146-156. https://doi.org/10.1016/j.jsb.2007.08.014
  13. Lucic V, Yang T, Schweikert G, Forster F, and Baumeister W (2005) Morphological characterization of molecular complexes present in the synaptic cleft. Structure 13, 423-434. https://doi.org/10.1016/j.str.2005.02.005
  14. McIntosh R, McIntosh R, Nicastro D, and Mastronarde D (2005) New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol. 15, 43-51. https://doi.org/10.1016/j.tcb.2004.11.009
  15. Mun J Y, Lee K E, and Han S S (2008) Techniques for cryo-electron tomography in biological field. Korean J. Microsc. 38, 73-79.
  16. Palade G and Palay S L (1954) Electron microscope observations of interneuronal and neuromuscular synapses. Anat. Rec. 118, 335-336.
  17. Rhyu I J and Park S N (2008) A glance of electron tomography through 4th international congress on electron tomogrpaphy. Korean J. Microsc. 38, 275-278.
  18. Scout M C, Chen C C, Mecklenburg M, Zhu C, Xu R, Ercius P, Dahmen U, Regan B C, and Miao J (2012) Electron tomography at 2.4-angstrom resolution. Nature 483, 444-447. https://doi.org/10.1038/nature10934
  19. Siksou L, Rostaing P, Lechaire J P, Boudier T, Ohtsuka T, Fejtov A, Kao H T, Greengard P, Gundelfinger E, Triller A, and Marty S (2007) Threedimensional architecture of presynaptic terminal cytomatrix. J. Neurosci. 27, 6868-6877. https://doi.org/10.1523/JNEUROSCI.1773-07.2007
  20. Siksou L, Varoqueaux F, Pascual O, Triller A, Brose N, and Marty S (2009) A common molecular basis for membrane docking and functional priming of synaptic vesicles. Eur. J. Neurosci. 30, 49-56. https://doi.org/10.1111/j.1460-9568.2009.06811.x