DOI QR코드

DOI QR Code

Performance Analysis of Cooperative Communication with Spread Spectrum to Overcome Channel Blockage for On-The-Move Terminal in Next Generation Satellite Communication Systems

차기 군 위성통신체계 환경에서 이동형 위성단말의 채널 blockage 극복을 위한 확산기반 협업통신 기법의 성능 분석

  • Received : 2014.03.24
  • Accepted : 2014.06.16
  • Published : 2014.09.30

Abstract

To compensate signal loss due to the channel blockage in satellite communication link, we propose a cooperative communication scheme for OTM(On-The-Move) terminal in next generation satellite communication systems. The proposed scheme configures cooperation subnet with adjacent OTM terminal with the help of ground communication equipment. Shared data is spread by orthogonal spreading code, then the spread sequences are transmitted simultaneously. The receiver combines the power of received signals by EGC(Equal gain combining). The OTM terminal blockage channel is modeled by 2-state Markov chain. We evaluate the bit error rate according to the blockage channel of the channel state for the performance analysis of the proposed scheme. As a result, the proposed scheme shows better BER performance than traditional scheme with the help of subset members. In particular, the proposed scheme shows superior performance as the channel block probability is higher. However, as the number of subset members is increasing, there is a constraint because of the higher multiple access interference.

본 논문에서는 차기 군 위성통신체계 환경에서 OTM(On-The-Move) 위성단말의 채널 blockage 신호 손실 보상을 위한 협업통신 기법을 제안하였다. 제안하는 협업기법은 인접 OTM 위성단말과 지상 무전기 체계를 통해 데이터를 공유하고 직교확산코드를 이용하여 대역확산 후 동시에 전송한다. 중첩되어 전송된 확산열은 EGC(Equal Gain Combining) 방식으로 결합한다. 성능 분석을 위해 OTM 위성단말의 blockage 채널을 2-state Markov chain으로 모델링하였으며, 이를 기반으로 협업단말들의 blockage 채널 상태에 따른 비트오류율을 도출하였다. 성능분석 결과 채널 조건이 더 나은 인접 OTM 위성단말의 협업으로 비트오류율 성능이 향상됨을 확인할 수 있었다. 특히 blockage 확률이 높을수록 협업을 통해 더욱 우수한 성능을 확인할 수 있었다. 그러나 서로 다른 지연을 갖는 확산 열 간 중첩으로 인해 협업단말 수 증가 시 다중접속간섭으로 인한 성능상의 제약이 있음을 확인하였다.

Keywords

References

  1. S. W. Han and J. W. Seo, "Future extention of the next generation military satellite," Inf. Commun. Mag., vol. 26, no. 3, pp. 24-31, Feb. 2009.
  2. B. K. Jeong, "Future trend in military satellite communication systems," Aerospace Weapon System Development Seminar, Nov. 2005.
  3. S. Egami, "Individual closed-loop satellite access power control system using overall satellite link quality level," IEEE Trans. Commun., vol. COM-30, no. 7, pp. 1806-1808, Jul. 1982.
  4. A. W. Dissanayake, "Application of open-loop uplink power control in Ka-band satellite links," in Proc. IEEE, vol. 85, no. 6, pp. 959-969, Jun. 1997. https://doi.org/10.1109/5.598418
  5. S. Woo, H.-W. Park, H.-S. Lee, Y.-S. Yoo, and B.-G. Jung, "A power control based MF-TDMA resource allocation scheme for next generation military satellite communication systems," J. KICS, vol. 37, no. 11, pp. 1138-1149, Dec. 2012. https://doi.org/10.7840/kics.2012.37C.11.1138
  6. V. Weerackody and E. Cuevas, "A statistical approach to specifying the off-axis EIRP spectral density in on-the-move satellite communications," IEEE Military Commun. Conf., MILCOM, pp. 1-7, San Diego, CA, Nov. 2008.
  7. L. Gonzalez and R. E. Greel, "A regulatory study and recommendation for EIRP spectal density requirement/allowance for SOTM terminal Ka-band on WGS system," IEEE Military Commun. Conf., MILCOM, pp. 1992-1997, San Jose, CA, Oct.-Nov. 2010.
  8. W. M. Smith, Channel characterization for EHF satellite communications on the move, MIT-LL, Tech. Rep. TR-1109, Jul. 2006.
  9. H. J. Son and T. W. Kwon, "Evaluation of MANET protocol scheme for TICN system," J. KIMST, vol. 12, no. 4, pp. 469-475, Aug. 2009.
  10. S. Perumal, V. Tabatabaee, J. S. Baras, C. J. Graff, and D. G. Yee, "Modeling TDMAbased USAP in JTRS MDL for multicast and unicast traffic," IEEE Military Commun. Conf., MILCOM, pp. 1924-1929, San Jose, CA, Oct.-Nov. 2010.
  11. G. Comparetto, P. Hallenbeck, M. Mirhakkak, N. Schult, R. Wade, and M. DiGennaro, "Verification and validation of the QualNet JTRS WNW and SRW waveform models," IEEE Military Commun. Conf., MILCOM, pp. 1818-1826, Baltimore, MD, Nov. 2011.
  12. E. Olechna and R. S. Wexler, "Modem performance characterization for satellite communications on the move," IEEE Military Commun. Conf., MILCOM, pp. 1-6, Oct. 2002.
  13. J. Wiss and R. Gupta, "The WIN-T MF-TDMA mesh network centric waveform," IEEE Military Commun. Conf., MILCOM, pp. 1-6, Orlando, FL, USA, Oct. 2007.
  14. V. Weerackody, E. Cuevas, and L. Gonzalez, "On a method to establish satellite links for dynamic bandwidth allocation," IEEE Aerospcae Conf., pp. 1-8, Big Sky, MT, Mar. 2006.
  15. M. A. Rahman, S. Sasaki, and H. Kikuchi, "An exact error rate analysis for equal gain combining of DS-CDMA signals in frequency selective nakagami fading," IEEE VTC Spring, pp. 1866-1870, May 2008.
  16. M. B. Pursley, "Performance evaluation for phase-coded spread spectrum multiple access communication-Part I: System analysis," IEEE Trans. Commun., vol. 25 pp. 795-799, Aug. 1977. https://doi.org/10.1109/TCOM.1977.1093915
  17. P. Patel and J. Holtzman, "Analysis of a simple successive interference cancellation scheme in a DS/CDMA system," IEEE J. Select. Areas Commun., vol. 12, no. 5, pp. 796-807, Jun. 1994. https://doi.org/10.1109/49.298053
  18. G. P. Efthymoglou, T. Piboongungon, and V. A. Aalo, "Performance of DS-CDMA receivers with MRC in Nakagami-m fading channels with arbitrary fading parameters," IEEE Trans. Veh. Technol., vol. 55, pp. 104-114, Jan. 2006. https://doi.org/10.1109/TVT.2005.861204
  19. M. K. Agrawal and S. E. Elmaghraby, "On computing the distribution function of the sum of independent random variables," ELSEVIER Computers & Operational Research, vol. 28, no. 5, pp. 473-483, Apr. 2001. https://doi.org/10.1016/S0305-0548(99)00133-1
  20. A. Xia and M. Zhang, "On approximation of markov binomial distributions," J. Bernoulli, vol. 15, no. 4, pp. 1335-1350, Jan. 2009. https://doi.org/10.3150/09-BEJ194