DOI QR코드

DOI QR Code

Species-specific Growth Responses of Betula costata, Fraxinus rhynchophylla, and Quercus variabilis Seedlings to Open-field Artificial Warming

거제수나무, 물푸레나무, 굴참나무 묘목의 실외 인위적 온난화에 대한 수종 특이적 생장 반응

  • Han, Saerom (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • An, Jiae (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Yoon, Tae Kyung (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Yun, Soon Jin (Department of Forest Conservation, Korea Forest Research Institute) ;
  • Hwang, Jaehong (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Cho, Min Seok (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Son, Yowhan (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University)
  • 한새롬 (고려대학교 대학원 환경생태공학과) ;
  • 안지애 (고려대학교 대학원 환경생태공학과) ;
  • 윤태경 (고려대학교 대학원 환경생태공학과) ;
  • 윤순진 (국립산림과학원 산림보전부) ;
  • 황재홍 (국립산림과학원 산림생산기술연구소) ;
  • 조민석 (국립산림과학원 산림생산기술연구소) ;
  • 손요환 (고려대학교 대학원 환경생태공학과)
  • Received : 2014.08.15
  • Accepted : 2014.09.29
  • Published : 2014.09.30

Abstract

Evaluation of tree responses to temperature elevation is critical for a development of forest management techniques coping with climate change. We conducted a study on the growth responses of Betula costata, Fraxinus rhynchophylla, and Quercus variabilis seedlings to open-field artificial warming. Artificial warming set-up using infra-red heater was built in 2012 and the temperature in warmed plots was regulated to be consistently $3^{\circ}C$ higher than that of control plots. The seeds of three species were sown, and the responses of growth, biomass allocation, and net photosynthetic rate of newly-germinated seedlings on the open-field artificial warming were determined. As a result, the growth responses of the seedlings differed with the species. B. costata showed decreases in the height to diameter ratio (H/D ratio), biomass, root weight to shoot weight ratio, and net photosynthetic rate. However, root collar diameter (RCD), height, biomass, and net photosynthetic rate of Q. variabilis were increased, while the response of F. rhynchophylla was rather obscure. There was no significant difference between warmed and control plots in seedling growth for 3 species in July, whereas, RCD, height, and H/D ratio of Q. variabilis were increased and H/D ratio of B. costata was decreased in November under warming. Species-specific growth responses to warming were similar to the species-specific responses of net photosynthetic rate and biomass allocation; therefore, net photosynthetic rate and biomass allocation might attribute to growth responses to warming. Besides, a relatively obvious response in autumn compared to summer might be affected by the phenological change following artificial warming. Species-specific responses of three deciduous species to warming in this study could be applied to the development of adaptive forest management policies to climate change.

기후변화 대응 산림 관리 방법을 개발하기 위해서는 온난화에 따른 수목의 반응을 예측하는 것이 중요하다. 본 연구는 우리나라 주요 활엽수종인 거제수나무(Betula costata), 물푸레나무(Fraxinus rhynchophylla), 굴참나무(Quercus variabilis) 묘목의 실외 인위적 온난화에 대한 생장 반응을 알아보기 위하여 수행되었다. 이를 위해 적외선등을 이용하여 지속적으로 기온을 $3^{\circ}C$ 증가시킬 수 있는 실외 인위적 온난화 시스템을 구축하고, 활엽수 3개 수종을 파종한 후, 온도 증가에 대한 발아 당년 묘목의 생장, 생물량 분배 및 순광합성률의 반응을 분석하였다. 연구 결과, 거제수나무, 물푸레나무, 굴참나무 묘목의 생장은 실외 인위적 온난화 처리에 대하여 수종과 시기에 따라 서로 다른 반응을 나타냈다. 즉 거제수나무는 온난화 처리에 따라 근원경 대비 묘고 비율, 총 생물량, 지상부 대비 뿌리 중량 비율, 순광합성률 등이 감소한 반면, 굴참나무는 근원경, 묘고, 총 생물량, 순광합성률 등이 증가하였으며, 물푸레나무는 다른 수종에 비하여 생장 반응이 뚜렷하지 않았다. 시기별 반응으로는, 7월에는 모든 수종에 대하여 온난화 처리에 따른 변화가 나타나지 않았으나 11월에는 굴참나무의 근원경, 묘고, H/D율이 증가한 반면 거제수나무의 H/D율이 감소하였다. 온난화에 대한 수종별 생장 반응의 차이는 순광합성률 및 생물량 분배의 수종별 반응과 유사하게 나타나, 온도 증가에 의한 순광합성률과 생물량 분배의 수종별 차이가 생장에 영향을 미친 것으로 생각된다. 한편, 여름에 비하여 가을에 더 두드러지게 나타난 생장 반응은 온난화에 의한 식물 계절 특성의 변화에 의한 것으로 보인다. 활엽수 3개 수종에 대하여 온난화에 의한 수종 특이적 생장 반응을 밝힌 본 연구 결과는 기후변화에 대응한 산림 관리 정책 개발에 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. Arend, M., T. Kuster, M. S. Gnthardt-Goerg, and M. Dobbertin, 2011: Provenance-specific growth responses to drought and air warming in three European oak species (Quercus robur, Q. petraea and Q. pubescens). Tree Physiology 31(3), 287-297. https://doi.org/10.1093/treephys/tpr004
  2. Bayala, J., M. Dianda, J. Wilson, S. J. Oudraogo, and K. Sanon, 2009: Predicting field performance of five irrigated tree species using seedling quality assessment in Burkina Faso, West Africa. New Forests 38(3), 309-322. https://doi.org/10.1007/s11056-009-9149-4
  3. Cho, M. S., S. W. Lee, J. Hwang, and J. W. Kim, 2012: Growth performance and photosynthesis of two deciduous hardwood species under different irrigation period treatments in a container nursery system. Korean Journal of Agricultural and Forest Meteorology 14(1), 28-38. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2012.14.1.028
  4. Chung, H., H. Muraoka, M. Nakamura, S. Han, O. Muller, and Y. Son, 2013: Experimental warming studies on tree species and forest ecosystems: a literature review. Journal of Plant Research 126(4), 447-460. https://doi.org/10.1007/s10265-013-0565-3
  5. Danby, R. K., and D. S. Hik, 2007: Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline. Global Change Biology 13(2), 437-451. https://doi.org/10.1111/j.1365-2486.2006.01302.x
  6. Domisch, T., L. Finr, and T. Lehto, 2002: Growth, carbohydrate and nutrient allocation of Scots pine seedlings after exposure to simulated low soil temperature in spring. Plant and Soil 246(1), 75-86. https://doi.org/10.1023/A:1021527716616
  7. Fenner, M., 2000: Seeds: The Ecology of Regeneration in Plant Communities. CABI Publishing, 410.
  8. Fisichelli, N., A. Wright, K. Rice, A. Mau, C. Buschena, and P. Reich, 2014: First-year seedlings and climate change: speciesspecific responses of 15 North American tree species. Oikos, Online published, DOI: 1.1111/oik.01349.
  9. Forest Resources Creation and Management Act No. 11456, Jun. 1, 2012.
  10. Han, C., Q. Liu, and Y. Yang, 2009: Short-term effects of experimental warming and enhanced ultraviolet-$\beta$ radiation on photosynthesis and antioxidant defense of Picea asperata seedlings. Plant Growth Regulation 58(2), 153-162. https://doi.org/10.1007/s10725-009-9363-2
  11. Han, S., H. Chung, N. J. Noh, S. J. Lee, W. Jo, T. K. Yoon, K. Yi, C. W. Park, S. Ko, and Y. Son, 2014: Effect of open-field experimental warming on the leaf phenology of oriental oak (Quercus variabilis) seedlings. Journal of Plant Ecology, Online published, DOI: 10.1093/jpe/rtt067.
  12. Han, S. H., D. H. Kim, G. N. Kim, J. C. Lee, and C. W. Yun, 2012: Changes on initial growth and physiological characteristics of Larix kaempferi and Betula costata seedlings under elevated temperature. Korean Journal of Agricultural and Forest Meteorology 14(2), 63-70. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2012.14.2.063
  13. Hwang, J., M. S. Cho, A. R. Yang, S. Han, and Y. Son, 2014: Seed germination and survival rate of Quercus variabilis and Betula costata in open-field experimental warming using the infrared lamp. 2014 Korean Forest Society Annual Meeting, Seoul, Korea, 47. (in Korean)
  14. Intergovernmental Panel on Climate Change (IPCC), 2013: Summary for Policymakers. In: Climate Change 2013: The Physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change, T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (Eds.), Cambridge University Press, 330.
  15. Jo, W., Y. Son, H. Chung, N. J. Noh, T. K. Yoon, S. Han, S. J. Lee, S. K. Lee, K. Yi, and J. Lixia, 2011: Effect of artificial warming on chlorophyll contents and net photosynthetic rate of Quercus variabilis seedlings in an open-field experiment. Journal of Korean Forest Society 100(4), 733-737. (in Korean with English abstract)
  16. Kim, G. T., 2003, Ecological forest management and reforestation problem-Comparison of diameter increment of Fraxinus rhynchophylla between artificial, natural and coppice forest, Korean Journal of Environment and Ecology 17(2), 105-111. (in Korean with English abstract)
  17. Kimball, B. A., M. M. Conley, S. Wang, X. Lin, C. Luo, J. Morgan, and D. Smith, 2007: Infrared heater arrays for warming ecosystem field plots. Global Change Biology 14(2), 309-320. https://doi.org/10.1111/j.1365-2486.2007.01486.x
  18. Kirschbaum, M. U. F., 2000: Forest growth and species distribution in a changing climate. Tree Physiology 20(5- 6), 309-322. https://doi.org/10.1093/treephys/20.5-6.309
  19. Kramer, K., I. Leinonen, and D. Loustau, 2000: The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. International Journal of Biometeorology 44(2), 67-75. https://doi.org/10.1007/s004840000066
  20. Lee, S. J., S. Han, T. K. Yoon, H. Chung, N. J. Noh, W. Jo, C.-W. Park, S. Ko, S. H. Han, and Y. Son, 2012: Effects of experimental warming on growth of Quercus variabilis seedlings. Journal of Korean Forest Society 101(4), 722-728. (in Korean with English abstract)
  21. Liu, Q., H. Yin, J. Chen, C. Zhao, X. Cheng, Y. Wei, and B. Lin, 2011: Belowground responses of Picea asperata seedlings to warming and nitrogen fertilization in the eastern Tibetan Plateau. Ecological Research 26(3), 637-648. https://doi.org/10.1007/s11284-011-0824-5
  22. Moore, J. R., J. D. Tombleson, J. A. Turner, and M. Colff, 2008: Wind effects on juvenile trees: a review with special reference to toppling of radiata pine growing in New Zealand. Forestry 81(3), 377-387. https://doi.org/10.1093/forestry/cpn023
  23. Morin, X., J. Roy, L. Soni, and I. Chuine, 2010: Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytologist 186(4), 900-910. https://doi.org/10.1111/j.1469-8137.2010.03252.x
  24. Piper, F. I., A. Fajardo, and L. A. Cavieres, 2013: Simulated warming does not impair seedling survival and growth of Nothofagus pumilio in the Southern Andes. Perspectives in Plant Ecology, Evolution and Systematics 15(2), 97-105.
  25. Saxe, H., M. G. R. Cannell, O. Johnsen, M. G. Ryan, and G. Vourlitis, 2001: Tree and forest functioning in response to global warming. New Phytologist 149(3), 369-399.
  26. Tjoelker, M. G., J. Oleksyn, and P. B. Reich, 1998: Seedlings of five boreal tree species differ in acclimation of net photosynthesis to elevated $CO_{2}$ and temperature. Tree Physiology 18(11), 715-726. https://doi.org/10.1093/treephys/18.11.715
  27. Wang, J., B. Duan, and Y. Zhang, 2012: Effects of experimental warming on growth, biomass allocation, and needle chemistry of Abies faxoniana in even-aged monospecific stands. Plant Ecology 213(1), 47-55. https://doi.org/10.1007/s11258-011-0005-1
  28. Wang, J., B. Duan, Y. Zhang, M. A. Bughio, and W. Jia, 2013: Density-dependent responses of Picea purpurea seedlings for plant growth and resource allocation under elevated temperature. Trees 27(6), 1775-1787. https://doi.org/10.1007/s00468-013-0923-8
  29. Way, D. A., and R. Oren, 2010: Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiology 30(6), 669-688. https://doi.org/10.1093/treephys/tpq015
  30. Wertin, T. M., M. A. McGuire, and R. O. Teskey, 2011: Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of the species range. Tree Physiology 31(12), 1277-1288. https://doi.org/10.1093/treephys/tpr091
  31. Xu, Z., H. Yin, P. Xiong, C. Wan, and Q. Liu, 2012: Shortterm responses of Picea asperata seedlings of different ages grown in two contrasting forest ecosystems to experimental warming. Environmental and Experimental Botany 77, 1-11. https://doi.org/10.1016/j.envexpbot.2011.10.011
  32. Yang, Y., G. Wang, L. Yang, and J. Guo, 2013: Effects of drought and warming on biomass, nutrient allocation, and oxidative stress in Abies fabri in Eastern Tibetan Plateau. Journal of Plant Growth Regulation 32(2), 298-306. https://doi.org/10.1007/s00344-012-9298-0
  33. Yin, H. J., Q. Liu, and T. Lai, 2008: Warming effects on growth and physiology in the seedlings of the two conifers Picea asperata and Abies faxoniana under two contrasting light conditions. Ecological Research 23(2), 459-469. https://doi.org/10.1007/s11284-007-0404-x
  34. Zhao, C. Z., and Q. Liu, 2009: Growth and physiological responses of Picea asperata seedlings to elevated temperature and to nitrogen fertilization. Acta Physiologiae Plantarum 31(1), 163-173. https://doi.org/10.1007/s11738-008-0217-8

Cited by

  1. Effects of experimental warming on soil respiration and biomass in Quercus variabilis Blume and Pinus densiflora Sieb. et Zucc. seedlings vol.73, pp.2, 2016, https://doi.org/10.1007/s13595-016-0547-4