DOI QR코드

DOI QR Code

SHRIMP U-Pb Zircon Ages of the Yeongju and Andong Granites, Korea and their Implications

영주화강암과 안동화강암의 SHRIMP U-Pb 저어콘 연대와 그 의미

  • Yoon, Rina (Division of Earth Environmental System, Pukyong National University) ;
  • Song, Yong-Sun (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Yi, Keewook (Division of Earth and Environmental Science, Korea Basic Science Institute)
  • 윤리나 (부경대학교 일반대학원 지구환경시스템과학부 지구환경과학전공) ;
  • 송용선 (부경대학교 환경해양대학 지구환경과학과) ;
  • 이기욱 (한국기초과학지원연구원 환경과학연구부)
  • Received : 2014.07.14
  • Accepted : 2014.08.18
  • Published : 2014.09.30

Abstract

SHRIMP zircon U-Pb age dating is carried out for the Yeongju and Andong granite batholiths intruding the Precambrian metamorphic complex and Paleozoic sedimentary formations within the NE Yeongnam Massif, Korea. Dating of zircons from a hornblende-biotite tonalite and an equigranular biotite granodiorite in the Yeongju granite has yielded ages of ca. 187 Ma and ca. 186 Ma, respectively. Also, dating of zircons from a biotite granodiorite and a very coarse-grained biotite granite in the Andong granite has yielded ages of ca. 182Ma and ca. 186Ma, respectively. These data indicate that the main intrusions of the Yeongju and Andong granite batholiths occur almost at the same age. The oldest age of ca. 194 Ma has been determined on zircons from a hornblende gabbro in the Andong granite, and the youngest age of 175 Ma is obtained from the Chunyang granite pluton, mainly consisting of fine-grained two-mica granite, of the Yeongju batholith. These results indicate that Jurassic Daebo magmatism in the Yeongju-Andong area, NE Yeongnam massif, started early at the Early Jurassic with an intrusion of mafic magma, and followed by an emplacement voluminous granite magma during the middle of the Early Jurassic, and was finalized with the emplacement of relatively small amount of much evolved granite magma at the end of Early Jurassic.

영남육괴 북동부 지역에서 선캠브리아 변성암 복합체와 고생대 퇴적암층을 관입한 영주화강암과 안동화강암의 저반에 대한 SHRIMP U-Pb 저어콘 연대측정을 실시하였다. 영주화강암 저반의 대부분을 차지하는 각섬석-흑운모 토날라이트와 등립질 흑운모 화강섬록암은 각각 약 187Ma와 186Ma이다. 안동화강암 저반에서는 주 구성암체인 안동심성암체의 흑운모 화강섬록암과 극조립질 흑운모 화강암이 각각 182Ma와 186Ma를 나타낸다. 따라서 영주화강암과 안동화강암 저반의 연대는 오차범위 내에서 거의 일치한다. 한편 안동화강암 저반의 각섬석 반려암은 시료 중 가장 고기인 약 194 Ma이고, 영주화강암 저반 중 세립질 복운모 화강암으로 주로 구성된 춘양화강암은 가장 젊은 약 175 Ma이다. 이러한 연대측정 자료는 영남육괴 북동부인 영주-안동 지역에서의 쥬라기 대보 화성활동은 쥬라기 초에 고철질 마그마의 관입으로 시작되었고, 전기 쥬라기 중엽에 정점에 이르러 다량의 화강암질 마그마가 관입하였으며, 최종적으로 전기 쥬라기의 끝 무렵에 소량의 보다 분화된 화강암질 마그마가 관입하였음을 지시한다.

Keywords

References

  1. Chang, T.W., 1990, Relative timing of shear zone formation and granite emplacement in the Yechon Shear Zone, Korea. Journal of Korean Institute of Mining Geology, 23, 453-463.
  2. Chang, T.W., 1991, On the microstructures of mylonitic rocks-with special reference to Yechon Shear Zone, Korea. Journal of Geological Society of Korea, 27, 177-190 (in Korean with English abstract).
  3. Cheong, C.-S., Kee, W.-S., Jeong, Y.-J., and Jeong, G.Y., 2006, Multiple deformations along the Honam shear zone in southwestern Korea constrained by Rb-Sr dating of synkinematic fabrics: Implications for the Mesozoic tectonic evolution of northeastern Asia. Lithos, 87, 289-299. https://doi.org/10.1016/j.lithos.2005.06.015
  4. Cheong, C.-S. and Kim, N., 2012, Review of Radiometric Ages for Phanerozoic Granitoids in Southern Korean Peninsula. Jour. Petrol. Soc. Korea, 21, 173-192. https://doi.org/10.7854/JPSK.2012.21.2.173
  5. Hwang, S.-K., 2000, Andong Batholith. 2000 Field Guide Book of the Petrological Society of Korea, 55p (in Korean with English abstract).
  6. Hwang, S.-K., An, U.-S. and Kim, S.-W., 2000, Spatial Compositional Variations and their Origins in th Buseok Pluton, Yeongju Batholith. Econ. Environ. Geol., 33, 147-163 (in Korean with English abstract).
  7. Hwang, S.-K., Chang, T.-W., Kim, J.-M., An, U.-S. and Lee, B.-H., 2002a, Lithofacies and multiphase emplacement in the Andong batholith. Jour. Geol. Soc. Korea, 38, 51-65 (in Korean with English abstract).
  8. Hwang, S.-K., Jang, Y.-D., and Lee, Y.-J., 2002b, Petrogenesis of Plutonic Rocks in the Andong Batholith. Jour. Petrol. Soc. Korea, 11, 200-213 (in Korean with English abstract).
  9. Hwang, S.-K., Kim, S.-W., Chang, T.-W., Kim, J.-M. and Lee, S.-K., 1999, Intrusive Phases and Igneous Processes in the Yeongju Batholith. Econ. Environ. Geol., 32, 669-688 (in Korean with English abstract).
  10. Hwang, S.-K. and Lee, B.-H., 2002, Reversely Zoned Compositional Variations and their Origins of the Andong Pluton, Andong Batholith, Korea. Econ. Environ. Geol., 35, 75-95 (in Korean with English abstract).
  11. Ireland, T.R. and Williams, I.S., 2003, Considerations in zircon geochronology by SIMS. In: Hanchar, J.M. and Hoskin, P.W.O.(eds.), Zircon: Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, 53, 215-241.
  12. Jin, M.-S., Gleadow, A.J.W. and Lovering, J.F., 1984, Fission track dating of apatite from the Jurassic and Cretaceous granites in South Korea. The Journal of the Geological Society of Korea, 20, 257-265.
  13. Jin, M.-S. and Jang, B.-A., 1999, Thermal history of the Late Triassic to Early Jurassic Yeongju-Chunyang Granitoid in the Sobaegsan Massif, South Korea, and its Tectonic Implication. Jour. Geol. Soc. Korea, 35, 189-200 (in Korean with English abstract).
  14. Kee, W.-S., Kim, S.W., Jeong, Y.-J. and Kwon, S., 2010, Characteristics of Jurassic continental arc magmatism in South Korea: tectonic implications. The Journal of Geology, 118, 305-323. https://doi.org/10.1086/651503
  15. Kim, B.-G, Lee, H.-Y., Kim, S.-J. and Jeong J.-G., 1988, Geological Report of the Andong Sheet (1:50,000). Korea Institute of Energy and Resources. 36p.
  16. Kim, C.-B., Chang, H.-W. and Turek, A., 2003, U-Pb zircon ages and Sr-Nd-Pb isotopic compositions for Permian- Jurassic plutons in the Ogcheon belt and Ryeongnam massif, Korea: Tectonic implications and correlation with the China Qinling-Dabie belt and the Japan Hida belt. The Island Arc, 12, 366-382. https://doi.org/10.1046/j.1440-1738.2003.00404.x
  17. Kim, C.-B. and Turek, A., 1996, Advances in U-Pb zircon geochronology of Mesozoic plutonism in the southwestern part of Ryeongnam massif, Korea. Geochemical Journal, 30, 323-338. https://doi.org/10.2343/geochemj.30.323
  18. Kim, N.-J. and Lee, H.-K., 1970, Explanatory Text of the Geological Map of Jungpyeong-dong Sheet (1:50,000). Geological Survey of Korea, 29p.
  19. Kim, O.-J., Hong, M.-S., Park, H.-I. and Kim, G.-T., 1963, Explanatory Text of the Geological Map of Samgun-ri Sheet (1:50,000). Geological Survey of Korea, 52p.
  20. Kim, S.W., Kwon, S. and Ryu, I.-C., 2009, Geochronological constraints on multiple deformations of the Honam Shear Zone, South Korea and its tectonic implication. Gondwana Research, 16, 82-89. https://doi.org/10.1016/j.gr.2008.12.004
  21. Kim, S.W., Lee, C.Y. and Ryu, I.-C., 2008, Geochemical and Nd-Sr Isotope Studies for Foliated Granitoids and Mylonitized Gneisses from the Myeongho Area in Northeast Yecheon Shear Zone. Econ. Environ. Geol., 41, 299-314 (in Korean with English abstract).
  22. Lee, J.-H., Lee, S.-H. and Chang, T.-W., 1989, Geological Report of the Punggi Sheet (1:50,000). Korea Institute of Energy and Resources, 33p.
  23. Lee, D.-S. and Lee, H.-Y., 1963, Explanatory Text of the Geological Map of Yean Sheet (1:50,000). Geological Survey of Korea, 51p.
  24. Lee, J.-I., Jwa, Y.-J., Park, C.-H., Lee, M.J., Moutte, J. and Kagami, H., 1999, Sr and Nd isotopic compositions of late Paleozoic Youngju and Andong granites in the northeastern Yeongnam Massif, Korea. Geochemical Journal, 33, 153-165. https://doi.org/10.2343/geochemj.33.153
  25. Lee, J.I., Jwa, Y.-J, Park, J.-H., Lee, M.J. and Moute, J., 1998, Petrology and geochemistry of the Youngju and Andong granites in the northeastern Yeongnam massif, Korea. Geosci. J., 2, 1-14. https://doi.org/10.1007/BF02910199
  26. Lee, J.I. and Lee, M.S., 1991, Mineralogy and petrology on the granitic rocks in the Youngju area, Kyoungsang Bukdo, Korea. J. Geol. Soc. Korea, 27, 626-641.
  27. Lee, M.-S., Park, B.-S. and Kim, J.-H., 1989, Geological Report of the Yongju Sheet (1:50,000). Korea Institute of Energy and Resources, 41p.
  28. Ludwig, K.R., 2008, User's manual for Isoplot 3.6: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4, Berkeley, CA. 77p.
  29. Ludwig, K.R., 2009, SQUID 2.50: A User's manual. Berkeley Geochronology Center Special Publication, 5, Berkeley, CA. 100p.
  30. Miller, C.F., McDowell, S.M. and Mapes, R.W., 2003, Hot and cold granites? Implications of zircon saturation temperature and preservation of inheritance. Geology, 31, 529-532. https://doi.org/10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
  31. Park, K.-H., 2012, Cyclic Igneous Activities During the Late Paleozoic to Early Cenozoic Period Over the Korean Peninsula. Jour. Petrol. Soc. Korea, 21, 193-202 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2012.21.2.193
  32. Park, K.-H., Kim, M.-J., Yang, Y.-S. and Cho, K.-O., 2010, Age Distribution of the Jurassic Plutons in Korean Peninsula. Jour. Petrol. Soc. Korea, 19, 269-281 (in Korean with English abstract).
  33. Park, K.-H., Lee, H.-S., Song, Y.-S. and Cheong, C.-S., 2006, Sphene U-Pb ages of the granite-granodiorites from Hamyang, Geochang and Yeongju areas of the Yeongnam Massif. Jour. Petrol. Soc. Korea, 15, 39-48 (in Korean with English abstract).
  34. Sagong, H., Kwon, S.-T., Cho, D.-R. and Jwa, Y.-J., 2005a, Relative Magma Formation Temperatures of the Phanerozoic Granitoids in South Korea Estimated by Zircon Saturated Temperature. Jour. Petrol. Soc. Korea, 14, 83-92 (in Korean with English abstract).
  35. Sagong, H., Kwon, S.-T. and Ree, J.-H., 2005b, Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics, 24, TC5002, doi:10.1029/2004TC001720.
  36. Shin, B.-W. and Choi, S.-I., 1968, Explanatory Text of the Geological Map of Sanggumgok Sheet (1:50,000). Geological Survey of Korea, 28p.
  37. Son, C.-M. and Kim, S.-J., 1963, Explanatory Text of the Geological Map of Chunyang Sheet (1:50,000). Geological Survey of Korea, 46p.
  38. Williams, I.S., Cho, D.-L. and Kim, S.W., 2009, Geochronology, and geochemical and Nd-Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: Constraints on Triassic post-collisional magmatism. Lithos, 107, 239-256. https://doi.org/10.1016/j.lithos.2008.10.017
  39. Yoon, S.-K., Cha, M.-S., Kim, L.-J. and Lee, J.-D., 1988, Geological Report of the Yecheon Sheet (1:50,000). Korea Institute of Energy and Resources, 27p.

Cited by

  1. Sr Isotopic Composition of Apatite from the Yeongju and Andong Granites: Isotopic Distinction between the Two Granites and Location of the Boundary vol.25, pp.1, 2016, https://doi.org/10.7854/JPSK.2016.25.1.89
  2. Geochronological and geochemical implications of Early to Middle Jurassic continental adakitic arc magmatism in the Korean Peninsula vol.227, 2015, https://doi.org/10.1016/j.lithos.2015.04.012
  3. Design of filter pack and well screen for the horizontal gallery of radial collector well considering soil distribution in riverside alluvium vol.51, pp.4, 2015, https://doi.org/10.14770/jgsk.2015.51.4.389
  4. SHRIMP U-Pb Age of the Early Jurassic Deformed Granites in the Aneui Quadrangle, SW Yeongnam Massif vol.49, pp.2, 2016, https://doi.org/10.9719/EEG.2016.49.2.147
  5. SHRIMP U-Pb Zircon Ages of the Haeinsa Granite from Central Part of the Yeongnam Massif vol.25, pp.4, 2016, https://doi.org/10.7854/JPSK.2016.25.4.401
  6. 2014, Application of Geochronological and Isotopic Data vol.23, pp.3, 2014, https://doi.org/10.7854/JPSK.2014.23.3.163
  7. A Comparative Study on the Whole Rock Magnetic Susceptibility and SHRIMP Zircon U-Pb Geochronology of the Domestic Dimension Stone and Chinese similar Dimension Stone vol.24, pp.3, 2015, https://doi.org/10.7854/JPSK.2015.24.3.273
  8. SHRIMP U-Pb ages of detrital zircons from the Early Cretaceous Nakdong Formation, South East Korea: Timing of initiation of the Gyeongsang Basin and its provenance vol.27, pp.5, 2018, https://doi.org/10.1111/iar.12258