DOI QR코드

DOI QR Code

Effects of Cr, Mo, Al, Zr, $Y_2O_3$ on the Microstructures and Tensile Properties of ODS Ferritic/Martensitic Alloys

페라이트/마르텐사이트계 산화물 분산강화 합금의 미세조직과 인장특성에 미치는 Cr, Mo, Al, Zr, $Y_2O_3$의 영향

  • Noh, Sanghoon (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • Choi, Ji-Eun (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • Choi, Byoung-Kwon (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • Kang, Suk Hoon (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • Kim, Tae Kyu (Nuclear Materials Division, Korea Atomic Energy Research Institute)
  • 노상훈 (한국원자력연구원, 원자력재료개발부) ;
  • 최지은 (한국원자력연구원, 원자력재료개발부) ;
  • 최병권 (한국원자력연구원, 원자력재료개발부) ;
  • 강석훈 (한국원자력연구원, 원자력재료개발부) ;
  • 김태규 (한국원자력연구원, 원자력재료개발부)
  • Received : 2013.07.18
  • Published : 2014.09.10

Abstract

To develop an advanced ODS alloy for core structural materials for next-generation nuclear reactor system applications, effects of alloying elements such as Cr, Mo, Al, Zr and $Y_2O_3$ on microstructures and tensile properties of ODS ferritic/martensitic alloys were investigated. The ODS alloys were fabricated by mechanical alloying, hot isostatic pressing, and hot rolling processes. The Cr concentration revealed little effect on the tensile strength, but it affected the grain morphology as a result of phase transformation. Mo acted to increase the tensile strength at an elevated temperature. Both grain and oxide particle sizes were significantly coarsened by Al addition. These enlargements led to a decrease in tensile strength but improved the elongation. Minor addition of Zr enhanced the tensile strength, and an increase of $Y_2O_3$ addition deteriorated the elongation. These results could be very useful in optimizing the alloying element concentration of ODS alloys with superior out-of-pile mechanical properties.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. T. K. Kim and S. H. Kim, J. Nucl. Mater. 411, 208 (2011). https://doi.org/10.1016/j.jnucmat.2011.02.017
  2. T. Lechtenberg, J. Nucl. Mater. 133, 149 (1985).
  3. B. Raj and M. Vijayalakshmi, Comprehensive of Nuclear Materials, pp. 97-121, Elsevier, Holland (2012).
  4. S. Ukai, T. Okuda, M. Fujiwara, T. Kobayashi, S. Mizuta, and H. Nakashima, J. Nucl. Sci. Technol. 39, 872 (2002). https://doi.org/10.1080/18811248.2002.9715271
  5. T. K. Kim, C. S. Bae, D. H. Kim, J. Jang, S. H. Kim, C. B. Lee, and D. Hahn, Nucl. Eng. Tech. 40, 305 (2008). https://doi.org/10.5516/NET.2008.40.4.305
  6. S. Yamashita, N. Akasaka, S. Ukai, and S. Ohnuki, J. Nucl. Mater. 367, 202 (2007).
  7. J. H. Yoon, S. H. Kang, Y. Lee, and S. S. Kim, Korean J. Met. Mater. 50, 1 (2012). https://doi.org/10.3365/KJMM.2012.50.1.001
  8. S. Ukai, Comprehensive of Nuclear Materials, pp.242- 271, Elsevier, Holland (2012).
  9. A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, J. H. Lee, N. Muthukumar, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, and T. F. Abe, J. Nucl. Mater. 417, 176 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.300
  10. S. Ukai, T, Nishida, H. Okada, T. Okuda, M. Fujiwara, and K. Asabe, J. Nucl. Sci. Technol. 34, 256 (1997). https://doi.org/10.1080/18811248.1997.9733658
  11. S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, K. Asabe, T. Nishida, and M. Fujiwara, J. Nucl. Mater. 204, 65 (1993). https://doi.org/10.1016/0022-3115(93)90200-I
  12. R. Kasada, N. Toda, K. Yutani, H. S. Cho, H. Kishimoto, and A. Kimura, J. Nucl. Mater. 367, 222 (200).