DOI QR코드

DOI QR Code

Effect of Applied Potential on Fatigue Crack Propagation Behavior of API X80 Steel in Seawater

  • Kim, Youngju (Korea Institute of Geoscience & Mineral Resources, Mineral Resources Research Division) ;
  • Kwon, Jaeki (Korea Institute of Geoscience & Mineral Resources, Mineral Resources Research Division) ;
  • Jeong, Daeho (Gyeongsang National University, ReCAPT, Department of Materials Science and Engineering) ;
  • Woo, Namsub (Korea Institute of Geoscience & Mineral Resources, Mineral Resources Research Division) ;
  • Goto, Masahiro (Oita University, Department of Mechanical Engineering) ;
  • Kim, Sangshik (Gyeongsang National University, ReCAPT, Department of Materials Science and Engineering)
  • Received : 2013.12.07
  • Accepted : 2014.01.23
  • Published : 2014.09.20

Abstract

In the present study, the fatigue crack propagation (FCP) tests were conducted on X80 steel in air and artificial seawater (ASW) under various applied potentials to establish optimum and safe working limits of cathodic protection (CP). The slow strain rate test (SSRT) was also conducted on the X80 BM specimens in ASW under CP potential to identify the susceptibility of hydrogen affecting the FCP behavior. The CP potential of -850 and $-1,050mV_{SCE}$ suppressed the environmental effect of seawater on the FCP behavior of X80 BM and WM specimens, showing almost identical da/dN-${\Delta}K$ curves for both air and ASW environments. The SSRT in ASW under CP potential of $-1,050mV_{SCE}$ suggested that the X80 BM specimen steel is susceptible to hydrogen embrittlement, but the effect of hydrogen was believed to be marginal in affecting the FCP behavior of the X80 specimens at a loading frequency of 10 Hz. The FCP behavior of high strength X80 steel is discussed based on the fractographic observation to understand the FCP mechanism in seawater under various CP potentials.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. W. Wang, Y. Shan, and K. Yang, Mater. Sci. Eng. A, 502, 38 (2009). https://doi.org/10.1016/j.msea.2008.10.042
  2. S. Y. Shin, S. M. Hong, J. H. Bae, K. S. Kim, and S. H. Lee, Met. Mater. Int. 47, 155 (2009).
  3. Y. Wang, W. Zhao, H. Ai, X. Zhou and T. Zhang, Corros. Sci. 53, 2761 (2011). https://doi.org/10.1016/j.corsci.2011.05.011
  4. R. F. D. Silva, F. A. F. Teofilo, E. Parente Jr., A. M. C. D. Melo, and A. S. D. Holanda, Mar. Struct. 33, 1 (2013). https://doi.org/10.1016/j.marstruc.2013.04.002
  5. M. Katsumi and O. Kenji, JFE Technology Report, No. 18 (2013).
  6. Y. Bai and Q. Bai, Subsea Pipelines and Risers, pp.413- 451, Elsevier, Kidlington (2005).
  7. D. P. Baxter, S. J. Maddox, and R. J. Pargeter, 26th Int. Conf. on Offshore Mech. & Arctic Eng., p.117, ASME, Sand Diego, USA (2007).
  8. NORSOK, NORSOK Standard M-001 (2004).
  9. C. Lindley and W. J. Rudd, Mar. Struct. 14, 397 (2001). https://doi.org/10.1016/S0951-8339(00)00048-4
  10. J. Billingham, J. V. Sharp, J. Spurrier, and P. J. Kilgallon, Health and Safety Executive (HSE) Books, Research Report 105, Cranfield University, Cranfield (2003).
  11. NORSOK, NORSOK Standard M-503 (2007).
  12. J. Prey, R. W. Barrett, and J. N. Wanklyn, Design and Operational Guidance on Cathodic Protection of Offshore Structures, Subsea Installations and Pipelines, Energy Institute, London (1990).
  13. M. Cabrini, S. Lorenzi, P. Marcassoli, and T. Pastore, Corros. Rev. 29, 261 (2011).
  14. ASM International Handbook Committee, ASM Handbook 19 - Fracture and Fatigue Properties of Structural Steels, ASM International (1996).
  15. M. N. James, J. Eng. Design, 9, 329 (1998). https://doi.org/10.1080/095448298261471
  16. J. K. Kwon, Y. J. Kim, S. Z. Han, M. Goto, and S. S. Kim, Met. Mater. Int. 15, 925 (2009). https://doi.org/10.1007/s12540-009-0925-7
  17. S. S. Kim, J. K. Kwon, N. S. Woo, S. E. Chung, and Y. J. Kim, Met. Mater. Int. 19, 1 (2013). https://doi.org/10.1007/s12540-013-1001-x
  18. D. H. Jeong, S. G. Lee, W. K. Jang, J. K. Choi, Y. J. Kim, and S. S. Kim, Metall. Trans. A, 44A, 4601 (2013).
  19. S. S. Kim, J. T. Burns, and R. P. Gangloff, Eng. Fract. Mech. 76, 651 (2009). https://doi.org/10.1016/j.engfracmech.2008.11.005
  20. British Standard, Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures, British Standards Institution (BSI), BS 7910, London (2005).
  21. R. N. King, Health, and Safety Executive (HSE) Books, OTH 511 (2003).
  22. R. N. King, A. Stacey, and J. V. Sharp, 15th International Conference Offshore Mechanics and Arctic Engineering, pp.341-348, Florence, Italy (1996).
  23. S. A. Shipilov and I. L. May, Eng. Fail. Anal. 13, 1159 (2006). https://doi.org/10.1016/j.engfailanal.2005.07.008
  24. R. Murakmi and W. G. Ferguson, Fatigue Fract. Eng. Mater. Struct. 9, 477 (1987). https://doi.org/10.1111/j.1460-2695.1987.tb00472.x
  25. P. S. Pao, S. J. Gill, C. R. Feng, and K. K. Sankaran, Scr. Mater. 45, 605 (2001). https://doi.org/10.1016/S1359-6462(01)01070-3
  26. A. K. Vasudevan and S. Suresh, Metall. Trans. A, 13A, 2271 (1982).
  27. ASTM Standard G5, Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements, Annual Book of ASTM Standards.03.02 (2002).
  28. ASTM Standard D1141, Standard Specification for Substitute Ocean Water, Annual book of ASTM Standards.11.02 (1990).
  29. ASTM Standard E647, Standard Test Method for Measurement of Fatigue Crack Growth Rates, Annual Book of ASTM Standards.03.01 (2002).
  30. ASTM Standard G129, Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking, Annual Book of ASTM Standards.03.02 (2006).
  31. J. S. Warner, S. S. Kim, and R. P. Gangloff, Int. J. Fatigue, 31, 1952 (2009). https://doi.org/10.1016/j.ijfatigue.2009.01.016
  32. W. Zhao, R. Xin, Z. He, and Y. Wang, Corros. Sci. 63, 387 (2012). https://doi.org/10.1016/j.corsci.2012.06.016
  33. D. A. Jones, Metall. Trans. A, 16A, 1133 (1985).
  34. S. A. Shipilov, Critical Assessment of the Rule of Cathodic Protection in Pipeline Integrity and Reliability, P. E. J. Flewitt et al. Eds., Engineering Structural Integrity Assessment, pp.155- 162, Need and Provision, Sheffield (2002).
  35. Y. G. Chun and S. I. Pyun, Fatigue Fract. Engng. Mater. Struct. 18, 661 (1995). https://doi.org/10.1111/j.1460-2695.1995.tb00890.x
  36. S. H. Chung, J. K. Lim, and E. G. Na, KSME J. 3, 1 (1989). https://doi.org/10.1007/BF02945676
  37. P. Liang, X. Li, C. Dua, and X. Chen, Mater. Des. 30, 1712 (2009). https://doi.org/10.1016/j.matdes.2008.07.012
  38. D. H. Jung, J. K. Kwon, N. S. Woo, Y. J. Kim, M. Goto, and S. S. Kim, Metall. Trans. A, 45A, 654 (2014).
  39. S. Ritter and H. P. Seifert, J. Nucl. Mater. 375, 72 (2008). https://doi.org/10.1016/j.jnucmat.2007.10.010
  40. M. Cabrini, S. Lorenzi, P. Marcassoli, and T. Pastore, Corros. Rev. 29, 261 (2011).
  41. J. Yu, R. Brook, I. Cole, D. Morabito, and G. Demofonti, Fatigue Fract. Engng Mater. Struct. 19, 1019 (1996). https://doi.org/10.1111/j.1460-2695.1996.tb01037.x
  42. B. Huneaua and J. Mendez, Int. J. Fatigue, 28, 124 (2006). https://doi.org/10.1016/j.ijfatigue.2005.04.011
  43. M. N. Ilman, Inter. J. Fatigue, 62, 228 (2014). https://doi.org/10.1016/j.ijfatigue.2013.03.008
  44. P. Liang, X. Li, C. Dua, and X. Chen, Mater. Des. 30, 1712 (2009). https://doi.org/10.1016/j.matdes.2008.07.012
  45. A. Torres-Islas, J. G. Gonzalez-Rodriguez, J. Uruchurtu, and S. Serna, Corros. Sci. 50, 2831 (2008). https://doi.org/10.1016/j.corsci.2008.07.007
  46. M. A. Arafin and J. A. Szpunar, Mater. Sci. Eng. A, 528, 4927 (2011). https://doi.org/10.1016/j.msea.2011.03.036
  47. Y. J. Kim, J. K. Kwon, Y. I. Jeong, N. S. Woo, and S. S. Kim, Met. Mater. Int. 19, 19 (2013). https://doi.org/10.1007/s12540-013-1004-7
  48. H. J. Lee, Y. J. Kim, Y. I. Jeong, and S. S. Kim, Corros. Sci. 55, 10 (2011).

Cited by

  1. 페라이트-오스테나이트 2상역 온도에서 미량합금 원소가 첨가된 탄소강의 재결정 거동 vol.26, pp.11, 2014, https://doi.org/10.3740/mrsk.2016.26.11.583
  2. Effect of stabilization annealing on SCC susceptibility of β-annealed Ti-6Al-4V alloy in 0.6 M NaCl solution vol.24, pp.1, 2018, https://doi.org/10.1007/s12540-017-7303-7
  3. Reviews on factors affecting fatigue behavior of high-Mn steels vol.24, pp.1, 2014, https://doi.org/10.1007/s12540-017-7459-1