DOI QR코드

DOI QR Code

CNT Growth Behavior on Ti Substrate by Catalytic CVD Process with Temperature Gradient in Tube Furnace

촉매 화학기상증착 공정에서 온도구배 설정을 통한 타이타늄 기판에서의 CNT 성장 거동

  • Park, Ju Hyuk (Department of Materials Science and Engineering, Hanyang University) ;
  • Byun, Jong Min (Department of Materials Science and Engineering, Hanyang University) ;
  • Kim, Hyung Soo (Department of Materials Science and Engineering, Hanyang University) ;
  • Suk, Myung-Jin (Department of Materials and Metallurgical Engineering, Kangwon National University) ;
  • Oh, Sung-Tag (Department of Meterials Science and Engineering, Seoul National University of Science and Technology) ;
  • Kim, Young Do (Department of Materials Science and Engineering, Hanyang University)
  • Received : 2014.10.02
  • Accepted : 2014.10.21
  • Published : 2014.10.28

Abstract

In this study, modified catalytic chemical vapor deposition (CCVD) method was applied to control the CNTs (carbon nanotubes) growth. Since titanium (Ti) substrate and iron (Fe) catalysts react one another and form a new phase ($Fe_2TiO_5$) above $700^{\circ}C$, the decrease of CNT yield above $800^{\circ}C$ where methane gas decomposes is inevitable under common CCVD method. Therefore, we synthesized CNTs on the Ti substrate by dividing the tube furnace into two sections (left and right) and heating them to different temperatures each. The reactant gas flew through from the end of the right tube furnace while the Ti substrate was placed in the center of the left tube furnace. When the CNT growth temperature was set $700/950^{\circ}C$ (left/right), CNTs with high yield were observed. Also, by examining the micro-structure of CNTs of $700/950^{\circ}C$, it was confirmed that CNTs show the bamboo-like structure.

Keywords

References

  1. A. C. Dupuis: Prog. Mater. Sci., 50 (2005) 929. https://doi.org/10.1016/j.pmatsci.2005.04.003
  2. M. S. Dresselhaus, G. Dresselhaus, J. C. Charlier and E. Hernandez: Phyl. Trans. R. Soc. Land. A, 362 (2004) 2065. https://doi.org/10.1098/rsta.2004.1430
  3. M. Paradise and T. Goswami: Mater. Design, 28 (2007) 1477. https://doi.org/10.1016/j.matdes.2006.03.008
  4. A. Magrez, J. W. Seo, R. Smajda, M. Mioni and L. Forro: Materials, 3, (2010) 4871. https://doi.org/10.3390/ma3114871
  5. J. W. Ward, B. Q. Wei and P. M. Ajayan: Chem. Phys. Lett., 376 (2003) 717. https://doi.org/10.1016/S0009-2614(03)01067-4
  6. A. Szabo, C. Perri, A. Csato, G. Giordano, D. Vuono and J. B. Nagy: Materials, 3, (2010) 3092. https://doi.org/10.3390/ma3053092
  7. A. N. Andriotti, M. Menou and G. Frandakis: Phys. Rev. Lett., 85 (2000) 3193. https://doi.org/10.1103/PhysRevLett.85.3193
  8. S. H. S. Zein, A. R. Mohamed and P. S. T. Sai: Ind. Eng. Chem. Res., 43 (2004) 4864. https://doi.org/10.1021/ie034208f
  9. H. C. Lee, P. S. Alegaonkar, D. Y. Kim, J. H. Lee, T. Y. Lee, S. Y. Jeon and J. B. Yoo: Thin Solid Films, 616 (2008) 3646.
  10. H. C. Zeng: Curr. Opin. Chem. Eng., 1 (2011) 11. https://doi.org/10.1016/j.coche.2011.07.002
  11. F. Doustan, A. A. Hosseini and M. A. Pasha: J. Nanostructures, 3 (2013) 333.
  12. T. Arcos, M. Garnier, J. W. Seo, P. Oelhafen, V. Thommen and D. Mathys: J. Phys. Chem. B, 108 (2004) 7728. https://doi.org/10.1021/jp049495v
  13. B. Samira, K. B. Chandrappa and B. A. H. Sharifah: Res. J. Chem. Sci., 3 (2013) 62.
  14. R. Vasquez and A. Molina: Miner. Eng., 39 (2012) 99. https://doi.org/10.1016/j.mineng.2012.05.003
  15. J. T. Han, J. H. Woo, H. S. Kim and J. G. Jee: Bull. Kor. Chem. Soc., 24 (2003) 1771. https://doi.org/10.5012/bkcs.2003.24.12.1771
  16. Y. Zhang, C. X. Harris, P. Wallenmeyer, J. Murowchick and X. Chen: J. Phys. Chem. C, 117 (2013) 24015. https://doi.org/10.1021/jp406948e
  17. F. Doustan, A. A. Hosseini and M. A. Pasha: J. Nanostructures, 3 (2013) 333.
  18. R. Baker and R. Waite: J. Catalysis, 37 (1975) 101. https://doi.org/10.1016/0021-9517(75)90137-2

Cited by

  1. Synthesis of CNT on a Camphene Impregnated Titanium Porous Body by Thermal Chemical Vapor Deposition vol.22, pp.2, 2015, https://doi.org/10.4150/KPMI.2015.22.2.122
  2. Fabrication of Ti Porous body with Improved Specific Surface Area by Synthesis of CNTs vol.23, pp.3, 2016, https://doi.org/10.4150/KPMI.2016.23.3.235