DOI QR코드

DOI QR Code

Application of the Orally Inserted Guiding Device for the Improved Motion Artifacts of the Cervical Spine MRI

경추부 자기공명영상의 움직임 인공물 개선을 위한 구강내 삽입 유도 기구의 적용

  • Lee, Jaeheun (Department of Biomedical Health Science, Graduate School of Dongeui University) ;
  • Yu, Yunsik (Department of Radiological Science, Dongeui University) ;
  • Lee, Jaeseung (Department of Radiological Science, Dongeui University) ;
  • Im, Inchul (Department of Radiological Science, Dongeui University)
  • 이재흔 (동의대학교 대학원 보건의과학과) ;
  • 유윤식 (동의대학교 방사선학과) ;
  • 이재승 (동의대학교 방사선학과) ;
  • 임인철 (동의대학교 방사선학과)
  • Received : 2014.08.04
  • Accepted : 2014.10.25
  • Published : 2014.10.30

Abstract

This study aims to suggest and test methods using an orally inserted guiding device in order to improve a motion artifact by involuntary oral motor such as removing one's dentures and swallowing saliva clinically structured cervical spine scan and to make the optimal image by minimizing motion artifact. A cervical spine test was conducted with 30 patients who wore dentures among those who had a cervical spinal disease from January 1, 2014 through June 30, 2014. As for testing methods, after removing denture, T1-TSE-Sagittal, T2-TSE-Sagittal, T1-TSE-Axial and T2-TSE-Axial were obtained in a normal position and a supine position; the orally inserted guiding device was inserted in patients' mouth; and then T1-TSE-Axial and T2-TSE-Axial were retested. As a result, in SNR, T1-TSE-Axial before inserting an orally inserted guiding device was $22.33{\pm}8.59$; T1-TSE-Axial after inserting the orally inserted guiding device was $25.21{\pm}7.93$; T2-TSE-Axial before inserting the orally inserted guiding device was $14.49{\pm}5.74$; and T2-TSE-Axial after inserting the orally inserted guiding device was $16.61{\pm}6.72$. In CNR, T1-TSE-Axial was measured at $0.23{\pm}0.01$ while T2-TSE-Axial at $0.21{\pm}0.01$. As a result of the qualitative analysis, T1-TSE-Axial before inserting the orally inserted guiding device was $3.49{\pm}0.11$; T1-TSE-Axial after inserting the orally inserted guiding device was $3.95{\pm}0.14$; T2-TSE-Axial before inserting the orally inserted guiding device was $3.25{\pm}0.18$; and T2-TSE-Axial after inserting the orally inserted guiding device was $3.68{\pm}0.09$. As a result of using an orally inserted guiding device, the resolution and contrast of the images improved as the patients' involuntary artifact decreased because of removing dentures and swallowing saliva, and it was found that the interpretation of the images and identification of the diseases improved.

본 연구는 임상적으로 정형화된 경추부 MR 검사에서 틀니 제거 환자들의 불수의적 구강운동, 침 삼킴 등의 불수의적 구강 운동에 의한 움직임 인공물을 개선하기 위해 구강내 삽입 유도 기구를 이용한 검사방법을 제안하고 인공물을 최소화하여 질환의 경계가 불분명했던 부분을 명확하게 하여 최적의 영상을 만들고자 하였다. 2014년 1월 1일부터 2014년 6월 31일까지 경추부 질환으로 내원한 환자 중 틀니를 착용한 30명을 대상으로 경추 자기공명검사를 시행하였다. 방법으로는 틀니를 제거한 후 바로 누운(supine position)자세로 $T_1$-TSE-Sagittal, $T_2$-TSE-Sagittal, $T_1$-TSE-Axial, $T_2$-TSE-Axial을 획득하고 환자의 입에 구강내 삽입 유도 기구를 삽입한 후 $T_1$-and $T_2$-TSE-Axial을 검사하였다. 결과로는 정량적 분석 SNR은 구강 삽입 유도 기구 사용 전 $T_1$-TSE-Axial이 $22.33{\pm}8.59$, 사용 후 $25.21{\pm}7.93$, $T_2$-TSE-Axial은 사용 전 $14.49{\pm}5.74$, 사용 후 $16.61{\pm}6.72$이었다. CNR은 $T_1$-TSE-Axial이 $0.23{\pm}0.01$, $T_2$-TSE-Axial이 $0.21{\pm}0.01$로 측정되었다. 정성적 분석으로는 $T_1$-TSE-Axial에서 구강내 삽입 유도기구 사용 전 $3.49{\pm}0.11$, 사용 후 $3.95{\pm}0.14$로 나타났으며 $T_2$-TSE-Axial에서는 구강내 삽입 유도기구 사용 전 $3.25{\pm}0.18$, 삽입 후 $3.68{\pm}0.09$로 나타났다. 결론적으로 구강내 삽입 유도 기구의 사용으로 움직임 인공물이 해소되어 영상의 대조도와 분해능이 향상되었고 영상 판독에 있어 질환의 식별능력이 우수하여 영상의 질이 향상됨을 알 수 있었다.

Keywords

References

  1. M. Modi, V. Singla, N. Khandelwal, S. Prabhakar, D. Duberkar, "Maroteaux-Lamy Syndrome(mucopolysaccharidosis VI) Presenting as familial myelopathy", international journal of Neuroscience, Vol. 121, No. 6, pp. 337-340, 2011. https://doi.org/10.3109/00207454.2011.553754
  2. C. B. Mohanty, D. P. Shukla, B. I. Devi, S. Ssmpath, "Craciovertebral junction pathology in high cervical disc disease", British Journal of Neurosurgery, Vol. 26, No. 6, pp. 845-850, 2012. https://doi.org/10.3109/02688697.2012.690918
  3. Held, J. Seitz, R. Frund, W. Nitz, M. Lenhart, A. Geissler, "Comparison of two-dimensional gradient echo, turbo spin echo and two-dinensional turbo gradient spin echo sequences in MRI of the cervical cord anatomy", European Journal of Radiology, Vol. 38, No. 1, pp. 64-71, 2001. https://doi.org/10.1016/S0720-048X(00)00253-9
  4. G. Sze, Y. Kawamura, C. Negishi, R. T. Constable, Merriam M, Oshio K, Jolesz F., "Fast spin-echo MR imaging of the cervical spine: influence of echo train length and echo spacing on image contrast and quality", Am. J. Neuroradiol., Vol. 14, No. 5, pp. 1203-1213, 1993.
  5. E. G. Kholmvski, A. A. Samsonov, D. L. Parker, "Motion artifact reduction technique for dula-contrast FSE imaging", Radiological Society of North America, Vol. 183, No. 1, pp. 183-191, 1987.
  6. L. Zang, E. G. Kholmovski, J. Guo, D. L. Parker, "TSE with averages-specific phase encoding ordering for motion detection and artifact suppression", Journal of Magnetic Resonance Imaging, Vol. 25, No. 6, pp. 1271-1282, 2007. https://doi.org/10.1002/jmri.20908
  7. H. P. Fautz, M. Honal, U. Saueressig, O. Schafer, S. A. Kannenqiesser, "Artifact reduction in moving-table acquisitions using parallel imaging and multiple averages", Magnetic Resonance in Medicine, Vol. 57, No. 1, pp. 226-232, 2007. https://doi.org/10.1002/mrm.21117
  8. F. G. Shellock, "Reference Manual for Magnetic Resonance Safery, Implants, and Decvices", Zimmer Research Report WA 217910 Rev.1, pp. 136, 2008.
  9. Mary Dempsey, Barrie Condon, M. Donald Hadley, "Seminars in Ultrasound, CT and MRI(MRI safery review)", Vol. 23, No. 5, pp. 392-401, 2002.
  10. C. carol. kuhlthau, "A principle of uncertainty for information seeking", Journal of Documetation, Vol. 49, No. 4, pp. 339-55, 1993. https://doi.org/10.1108/eb026918
  11. J. Sijbers, P. Scheunders, N. Bonnet, D. Van Dyck, E. Raman, "Quantification and improvement of the signal-to-noise ratio in a magnetic resonance image acquistion procedure", Magnetic Resonance Imaging, Vol. 14, No. 10, pp. 1157-63, 1996. https://doi.org/10.1016/S0730-725X(96)00219-6
  12. Assessment and Items of Cervical spine in Magnetic Resonance Imaging, "Korean Institute for accreditation of Medical Imaging", http://www.ikiami.or.kr.
  13. R. A. Zoroofi, Y. Sato, S. Tamura, H. Naito, "MRI artifact cancellation due to rigid motio in the imaging plane", Medicla Imaging, IEEE Trancesactions, Vol 15, No. 6, pp. 768-84, 1996. https://doi.org/10.1109/42.544495
  14. Y. Shimada, H. Nishimoto, T. Kochiyama, H. Fujimoto, S. Masafi, K. Murase, "A technique to reduce motion artifacts for externally triggered cine-MRI(EC-MRI) based on detecting the on set of the artifacted word with spectral analysis", Magnetic Resonance in Medical Sciences", Vol. 11, No. 4, pp. 273-82, 2012. https://doi.org/10.2463/mrms.11.273

Cited by

  1. Making Aids of Magnetic Resonacnce Image Susing 3D Printing Technology vol.10, pp.6, 2016, https://doi.org/10.7742/jksr.2016.10.6.403
  2. The Utilization of Immobilization Device to Reduce Motion Artifact Caused by Breathing in Upper Extremity MRI vol.30, pp.1, 2014, https://doi.org/10.31159/ksmrt.2020.30.1.11