DOI QR코드

DOI QR Code

Constraining Cosmology with Image Separation Statistics for Gravitationally-lensed Quasars in the Sloan Digital Sky Survey

  • Han, Du-Hwan (Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Park, Myeong-Gu (Department of Astronomy and Atmospheric Sciences, Kyungpook National University)
  • Received : 2014.01.15
  • Published : 2014.09.30

Abstract

The Sloan Digital Sky Survey (SDSS) has successfully compiled data on more than 300,000 quasars. It, therefore, provides the best sample of multiple-image, gravitationally-lensed quasistellar objects (QSOs) with a well-defined selection effect. We use a SDSS Quasar Lens Search (SQLS) sample of lensed quasars to investigate the constraints on the matter density ${\Omega}_m$ and the cosmological constant ${\Omega}_{\Lambda}$. In order to be free from magnification bias, we use only image separation statistics, which requires detailed knowledge of the source''s luminosity function at all redshifts. The maximum-likelihood analysis shows that cosmological models with non-zero cosmological constant are more likely, but the statistical significance is not large enough. Monte-Carlo simulation show that 100 or more lensed QSOs can provide constraints comparable to other major cosmological constraints. It also shows that unless the number of lensed QSOs is an order-of-magnitude larger, the lensing statistics test has a degeneracy in the ${\Omega}_{\Lambda}-{\Omega}_m$ parameter space in the direction roughly perpendicular to ${\Omega}_{\Lambda}+{\Omega}_m=1$ and that the lensing statistics test alone cannot determine ${\Omega}_{\Lambda}$ and ${\Omega}_m$ simultaneously. We also derive constraints on the equation-of-state parameter for dark energy.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. D. Walsh, R. F. Carswell and R. J. Weymann, Nature 279, 381 (1979) https://doi.org/10.1038/279381a0
  2. E. L. Turner, J. P. Ostriker and J. R. Gott III, Astrophy. J. 284, 1 (1984) https://doi.org/10.1086/162379
  3. J. R. Gott III, M.-G. Park and H. M. Lee, Astrophy. J. 338, 1 (1989) https://doi.org/10.1086/167175
  4. H.-A. Lee and M.-G. Park, J. Korean Astron. Soc. 27, 103 (1994)
  5. M.-G. Park, J. Korean Phys. Soc. 29, 664 (1996)
  6. M.-G. Park and J. R. Gott III, Astrophy. J. 489, 476 (1997) https://doi.org/10.1086/304810
  7. M. Fukugita and E. L. Turner, Mon. Not. Roy. Astr. Soc. 253, 99 (1991) https://doi.org/10.1093/mnras/253.1.99
  8. M. Fukugita, T. Futamase, M. Kasai and E. L. Turner, Astrophy. J. 393, 3 (1992) https://doi.org/10.1086/171481
  9. C. S. Kochanek, Astrophy. J. 466, 638 (1996) https://doi.org/10.1086/177538
  10. M. Chiba and Y. Yoshii, Astrophy. J. 510, 42 (1999) https://doi.org/10.1086/306575
  11. M. Im, R. E. Griffiths and K. U. Ratnatunga, Astrophy. J. 475, 457 (1997) https://doi.org/10.1086/303583
  12. K.-H. Chae, Mon. Not. Roy. Astr. Soc. 346, 746 (2003) https://doi.org/10.1111/j.1365-2966.2003.07092.x
  13. C. P. Ahn et al., Astrophy. J. Suppl. 211, 17 (2014) https://doi.org/10.1088/0067-0049/211/2/17
  14. M. Oguri et al., Astron. J. 132, 999 (2006) https://doi.org/10.1086/506019
  15. N. Inada et al., Astron. J. 140, 403 (2010) https://doi.org/10.1088/0004-6256/140/2/403
  16. M. Oguri et al., Astron. J. 135, 512 (2008) https://doi.org/10.1088/0004-6256/135/2/512
  17. M. Oguri et al., Astron. J. 143, 120 (2012) https://doi.org/10.1088/0004-6256/143/5/120
  18. A. G. Riess et al. Astron. J. 116, 1009 (1998) https://doi.org/10.1086/300499
  19. S. Perlmutter et al. Astrophy. J. 517, 565 (1999) https://doi.org/10.1086/307221
  20. S. M. Croom et al., Mon. Not. Roy. Astr. Soc. 399, 1755 (2009) https://doi.org/10.1111/j.1365-2966.2009.15398.x
  21. D. G. York et al., Astron. J. 120, 1579 (2000) https://doi.org/10.1086/301513
  22. J. E. Gunn et al., Astron. J. 131, 2332 (2006) https://doi.org/10.1086/500975
  23. M. Fukugita et al., Astron. J. 111, 1748 (1996) https://doi.org/10.1086/117915
  24. J. E. Gunn et al., Astron. J. 116, 3040 (1998) https://doi.org/10.1086/300645
  25. R. Lupton, J. E. Gunn, Z. Ivezic, G. R. Knapp and S. Kent, Astron. Soc. Pac. Conf. 238, 269 (2001)
  26. G. T. Richards et al., Astron. J. 123, 2945 (2002) https://doi.org/10.1086/340187
  27. D. J. Eisenstein et al., Astron. J. 122, 2267 (2001) https://doi.org/10.1086/323717
  28. N. Inada et al., Astron. J. 143, 119 (2012) https://doi.org/10.1088/0004-6256/143/5/119
  29. C. S. Kochanek, Mon. Not. Roy. Astr. Soc. 261, 453 (1993) https://doi.org/10.1093/mnras/261.2.453
  30. R. K. Sheth et al., Astrophy. J. 594, 225 (2003) https://doi.org/10.1086/376794
  31. K.-H. Chae, Mon. Not. Roy. Astr. Soc. 402, 2031 (2010) https://doi.org/10.1111/j.1365-2966.2009.16073.x
  32. Y.-Y. Choi, C. Park and M. S. Vogeley, Astrophy. J. 658, 884 (2007) https://doi.org/10.1086/511060
  33. J. K. Adelman-McCarthy et al., Astrophys. J. Suppl. 172, 634 (2007) https://doi.org/10.1086/518864
  34. M. R. Blanton et al., Astron. J. 129, 2562 (2005) https://doi.org/10.1086/429803
  35. M. Tegmark et al., Astrophy. J. 606, 702 (2004) https://doi.org/10.1086/382125
  36. S. M. Faber and Jackson R. E., Astrophy. J. 204, 668 (1976) https://doi.org/10.1086/154215
  37. M. Bernardi et al., Astron. J. 125, 1849 (2003) https://doi.org/10.1086/374256
  38. R. Lupton, Statistics in theory and practice (Princeton Univ. Press, Princeton, 1993)
  39. C. S. Kochanek, Astrophy. J. 419, 12 (1993) https://doi.org/10.1086/173455
  40. Perlmutter, S. Physics Today 56, 040000 (2003)
  41. N. Inada et al., Astron. J. 133, 206 (2007) https://doi.org/10.1086/509702
  42. I. Kayo et al., Astron. J. 139, 1614 (2010) https://doi.org/10.1088/0004-6256/139/4/1614
  43. N. Inada et al., Astron. J. 131, 1934 (2006) https://doi.org/10.1086/500591
  44. A. Oscoz, M. Serra-Ricart, E. Mediavilla, J. Buitrago, and L. J. Goicoechea, Astrophy. J. 491, L7 (1997) https://doi.org/10.1086/311045
  45. N. Inada et al., Astron. J. 126, 666 (2003) https://doi.org/10.1086/375906
  46. A. Eigenbrod et al., Astr. Astrophys. 451, 747 (2006) https://doi.org/10.1051/0004-6361:20054423
  47. P. L. Schechter, M. D. Gregg, R. H. Becker, D. J. Helfand and R. L. White, Astron. J. 115, 1371 (1998) https://doi.org/10.1086/300294
  48. A. Eigenbrod, F. Courbin and G. Meylan, Astr. Astrophys. 465, 51 (2007) https://doi.org/10.1051/0004-6361:20066939
  49. B. Pindor et al., Astron. J. 131, 41 (2006) https://doi.org/10.1086/497965
  50. I. Kayo et al., Astron. J. 134, 1515 (2007) https://doi.org/10.1086/521652
  51. E. O. Ofek, M. Oguri, N. Jackson, N. Inada and I. Kayo, Mon. Not. Roy. Astr. Soc. 382, 412 (2007) https://doi.org/10.1111/j.1365-2966.2007.12389.x
  52. T. Morokuma et al., Astron. J. 133, 214 (2007) https://doi.org/10.1086/509701
  53. M. Oguri et al., Publ. Astron. Soc. Japan 56, 399 (2004) https://doi.org/10.1093/pasj/56.2.399
  54. A. Eigenbrod, F. Courbin, G. Meylan, C. Vuissoz and P. Magain, Astr. Astrophys. 451, 759 (2006) https://doi.org/10.1051/0004-6361:20054454
  55. N. Jackson, H. Rampadarath, E. O. Ofek, M. Oguri and M.-S. Shin, Mon. Not. Roy. Astr. Soc. 419, 2014 (2012) https://doi.org/10.1111/j.1365-2966.2011.19857.x
  56. N. Inada et al., Astron. J. 137, 4118 (2009) https://doi.org/10.1088/0004-6256/137/5/4118
  57. D. E. Johnston et al., Astron. J. 126, 2281 (2003) https://doi.org/10.1086/379001
  58. M. Lacy et al., Astron. J. 123, 2925 (2002) https://doi.org/10.1086/340568
  59. B. Pindor et al., Astron. J. 127, 1318 (2004) https://doi.org/10.1086/381904

Cited by

  1. CONSTRAINING COSMOLOGICAL PARAMETERS WITH IMAGE SEPARATION STATISTICS OF GRAVITATIONALLY LENSED SDSS QUASARS: MEAN IMAGE SEPARATION AND LIKELIHOOD INCORPORATING LENS GALAXY BRIGHTNESS vol.48, pp.1, 2014, https://doi.org/10.5303/jkas.2015.48.1.83
  2. Constraining cosmic curvature by using age of galaxies and gravitational lenses vol.2017, pp.3, 2014, https://doi.org/10.1088/1475-7516/2017/03/028