DOI QR코드

DOI QR Code

Application of experimental design for removal of sunset yellow by copper sulfide nanoparticles loaded on activated carbon

  • Received : 2013.10.02
  • Accepted : 2013.10.27
  • Published : 2014.09.25

Abstract

In this study, copper sulfide nanoparticles loaded on activated carbon (CuS-NP-AC) was synthesized by novel, low cost and green approach and characterized using different techniques such as SEM, and BET. This material was used for the removal of sunset yellow (SY) from aqueous solutions was investigated. The dependency of removal percentages to variables such as pH, initial SY concentration, adsorbent dosage and sonication time were studied by central composite design (CCD) coupled with response surface methodology (RSM) by considering the desirability function (DF). The accuracy and ability of method at optimum values predicted by this model was studied by conduction of similar experiments at the same previously optimized conditions. A good agreement between experimental and predicted data was achieved that efficiency of this model for prediction of real optimum point. Among the well known previously isotherm models, the experimental equilibrium data efficiently can be represented by the Langmuir model, while the rate of adsorption. Kinetic data efficiently can be interpreted by combination of pseudo-second order as well as intraparticle diffusion models. The small amount of this adsorbent (0.016 g) is applicable for removal of high amount of SY (>90%) in reasonable time (17 min).

Keywords

References

  1. Y. Xie, Y. Li, L. Niu, H. Wang, H. Qian, W. Yao, Talanta 100 (2012) 32-37. https://doi.org/10.1016/j.talanta.2012.07.080
  2. F. Pereira de Sa, B.N. Cunha, L.M. Nunes, Chem. Eng. J. 215-216 (2013) 122-127. https://doi.org/10.1016/j.cej.2012.11.024
  3. W.H. Li, Q.Y. Yue, B.Y. Gao, Z.H. Ma, Y.J. Li, H.X. Zhao, Chem. Eng. J. 171 (2011) 320-327. https://doi.org/10.1016/j.cej.2011.04.012
  4. M. Ghaedi, Spectrochim. Acta Part A 94 (2012) 346-351. https://doi.org/10.1016/j.saa.2012.02.097
  5. R.S. Razmara, A. Daneshfar, R. Sahrai, J. Ind. Eng. Chem. 17 (2011) 533-536. https://doi.org/10.1016/j.jiec.2010.10.028
  6. A. Dabrowski, Adv. Colloid Interface Sci. 93 (2001) 135-224. https://doi.org/10.1016/S0001-8686(00)00082-8
  7. M. Ghaedi, H. Khajehsharifi, A. Hemmati Yadkuri, M. Roosta, A. Asghari, Toxicol. Environ. Chem. 94 (2012) 873-883. https://doi.org/10.1080/02772248.2012.678999
  8. O.S. Chan, W.H. Cheung, G. McKay, Chem. Eng. J. 191 (2012) 162-170. https://doi.org/10.1016/j.cej.2012.02.089
  9. M. Ghaedi, K. Mortazavi, M. Jamshidi, M. Roosta, B. Karami, Toxicol. Environ. Chem. 94 (2012) 846-859. https://doi.org/10.1080/02772248.2012.678998
  10. K.K.H. Choy, J.F. Porter, G. McKay, Chem. Eng. J. 103 (2004) 133-145. https://doi.org/10.1016/j.cej.2004.05.012
  11. Y.E. Unsal, M. Soylak, M. Tuzen, Int. J. Food Sci. Technol. 47 (2012) 1253-1258. https://doi.org/10.1111/j.1365-2621.2012.02966.x
  12. N. Hoda, E. Bayram, E Ayranci, J. Hazard. Mater. 137 (2006) 344-351. https://doi.org/10.1016/j.jhazmat.2006.02.009
  13. M. Ghaedi, A. Hekmati Jah, S. Khodadoust, R. Sahraei, A. Daneshfar, A. Mihandoost, M.K. Purkait, Spectrochim. Acta Part A 90 (2012) 22-27. https://doi.org/10.1016/j.saa.2011.12.064
  14. M. Ghaedi, A. Hassanzadeh, S. Nasiri Kokhdan, J. Chem. Eng. 56 (2011) 2511-2520.
  15. A. Duran, M. Tuzen, M. Soylak, J. Hazard. Mater. 169 (2009) 466-471. https://doi.org/10.1016/j.jhazmat.2009.03.119
  16. M. Tuzen, K.O. Saygi, C. Usta, M. Soylak, Bioresour. Technol. 99 (2008) 1563-1570. https://doi.org/10.1016/j.biortech.2007.04.013
  17. M. Tuzen, K.O. Saygi, M. Soylak, J. Hazard. Mater. 152 (2008) 632-639. https://doi.org/10.1016/j.jhazmat.2007.07.026
  18. M. Tuzen, M. Soylak, J. Hazard. Mater. 147 (2007) 219-225. https://doi.org/10.1016/j.jhazmat.2006.12.069
  19. J.P.S. Fernandes, B.S. Carvalho, C.V. Luchez, M.J. Politi, C.A. Brandt, Ultrason. Sonochem. 18 (2011) 489-493. https://doi.org/10.1016/j.ultsonch.2010.10.003
  20. M. Ghaedi, A. Najibi, H. Hossainian, A. Shokrollahi, M. Soylak, Toxicol. Environ. Chem. 94 (2012) 40-48. https://doi.org/10.1080/02772248.2011.636043
  21. S. Chakma, V.S. Moholkar, Chem. Eng. J. 175 (2011) 356-367. https://doi.org/10.1016/j.cej.2011.09.123
  22. S. Khodadoust, M. Ghaedi, M.R. Hadjmohammadi, Talanta 116 (2013) 637-646. https://doi.org/10.1016/j.talanta.2013.07.013
  23. C. Pizarro, C. Saenz-Gonzalez, N. Perez-del-Notario, J.M. Gonzalez-Saiz, J. Chromatogr. A 1229 (2012) 63-71. https://doi.org/10.1016/j.chroma.2012.01.033
  24. S. Khodadoust, M.R. Hadjmohammadi, Anal. Chim. Acta 699 (2011) 113-119. https://doi.org/10.1016/j.aca.2011.04.011
  25. S. Khodadoust, M. Ghaedi, J. Sep. Sci. 36 (2013) 1734-1742. https://doi.org/10.1002/jssc.201300085
  26. P.F. Martins, C. Carmona, E.L. Martinez, P. Sbaite, R.M. Filho, M.R.W. Maciel, Sep. Purif. Technol. 98 (2012) 464-471. https://doi.org/10.1016/j.seppur.2012.08.009
  27. M.B. Hossain, N.P. Brunton, A. Patras, B. Tiwari, C.P.O. Donnell, A.B. Martin-Diana, C.B. Ryan, Ultrason. Sonochem. 19 (2012) 582-590. https://doi.org/10.1016/j.ultsonch.2011.11.001
  28. I. Langmuir, J. Am. Chem. Soc. 38 (1916) 2221-2295. https://doi.org/10.1021/ja02268a002
  29. H.M.F. Freundlich, J. Phys. Chem. 57 (1906) 385-470.
  30. M. Ghaedi, H. Khajesharifi, A. Hemmati Yadkuri, M. Roosta, R. Sahraei, A. Daneshfar, Spectrochim. Acta Part A 86 (2012) 62-68. https://doi.org/10.1016/j.saa.2011.09.064
  31. H. Zhang, Y. Tang, X. Liu, Z. Ke, X. Su, D. Cai, X. Wang, Y. Liu, Q. Huang, Z. Yu, Desalination 274 (2011) 97-104. https://doi.org/10.1016/j.desal.2011.01.077
  32. M.J. Temkin, V. Pyzhev, Acta Physiochim. USSR 12 (1940) 217-222.
  33. Y.S. Ho, G. McKay, Process Biochem. 34 (1999) 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  34. S. Lagergren, Handlingar 24 (1898) 1-39.
  35. Y.S. Ho, J. Hazard. Mater. 136 (2006) 681-689. https://doi.org/10.1016/j.jhazmat.2005.12.043
  36. Y.S. Ho, Water Res. 40 (2006) 119-125. https://doi.org/10.1016/j.watres.2005.10.040
  37. D.M. Ruthven, K.F. Loughlin, Chem. Eng. Sci. 26 (1971) 577-584. https://doi.org/10.1016/0009-2509(71)86002-5
  38. E. Bulut, M. Ozacar, Microporous Mesoporous Mater. 115 (2008) 234-246. https://doi.org/10.1016/j.micromeso.2008.01.039
  39. S.H. Chien, W.R. Clayton, Soil Sci. Soc. Am. J. 44 (1980) 265-268. https://doi.org/10.2136/sssaj1980.03615995004400020013x
  40. J.J. Pignatello, F.J. Ferrandino, L.Q. Huangm, Environ. Sci. Technol. 27 (1993) 1563-1571. https://doi.org/10.1021/es00045a010
  41. D. Ozdes, C. Duran, H.B. Senturk, J. Environ. Manag. 92 (2011) 3082-3090. https://doi.org/10.1016/j.jenvman.2011.07.022

Cited by

  1. Modeling and Optimization for Production of Rice Husk Activated Carbon and Adsorption of Phenol vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/278075
  2. 망간산화물이 코팅된 활성탄의 납 흡착특성에 관한 칼럼 실험 vol.15, pp.8, 2014, https://doi.org/10.14481/jkges.2014.15.8.39
  3. Random forest model for the ultrasonic-assisted removal of chrysoidine G by copper sulfide nanoparticles loaded on activated carbon; response surface methodology approach vol.5, pp.73, 2014, https://doi.org/10.1039/c5ra08399k
  4. Gold Nanoparticles Loaded on Activated Carbon as Novel Adsorbent for Kinetic and Isotherm Studies of Methyl Orange and Sunset Yellow Adsorption vol.36, pp.5, 2014, https://doi.org/10.1080/01932691.2014.893527
  5. Removal of sunset yellow FCF from aqueous solution using polyethyleneimine-modified MWCNTs vol.73, pp.6, 2014, https://doi.org/10.2166/wst.2015.601
  6. Performance of CuS nanoparticle loaded on activated carbon in the adsorption of methylene blue and bromophenol blue dyes in binary aqueous solutions: Using ultrasound power and optimization by central vol.219, pp.None, 2014, https://doi.org/10.1016/j.molliq.2016.03.050
  7. Effect of hybridization on the value-added activated carbon materials vol.7, pp.3, 2014, https://doi.org/10.1007/s40090-016-0089-5
  8. Comparative study on ultrasonic assisted adsorption of dyes from single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon: Experimental design methodology vol.34, pp.None, 2014, https://doi.org/10.1016/j.ultsonch.2016.05.047
  9. A response surface modelling study for sorption of Cu2+, Ni2+, Zn2+ and Cd2+ using chemically modified poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-m vol.35, pp.3, 2014, https://doi.org/10.1177/0263617416674950
  10. Efficient adsorption of erythrosine and sunset yellow onto modified palladium nanoparticles with a 2-diamine compound: Application of multivariate technique vol.48, pp.None, 2017, https://doi.org/10.1016/j.jiec.2016.11.040
  11. Compound Copper Chalcogenide Nanocrystals vol.117, pp.9, 2017, https://doi.org/10.1021/acs.chemrev.6b00376
  12. Synthesis and Characterization of Hierarchical Flower-Like ZnO Particles as Effective Adsorbent and Antibacterial Agent vol.8, pp.5, 2014, https://doi.org/10.18178/ijcea.2017.8.5.676
  13. Ultrasonic treatment of water contaminated with various pollutants onto copper nanowires loaded on activated carbon using response surface methodology and artificial intelligent vol.31, pp.12, 2017, https://doi.org/10.1002/aoc.3878
  14. Green synthesis of copper oxide nanoparticles impregnated on activated carbon using Moringa oleifera leaves extract for the removal of nitrates from water vol.96, pp.11, 2014, https://doi.org/10.1002/cjce.23185
  15. Optimization of process parameters for naphthalene removal onto nano-iron oxide/carbon composite by response surface methodology, isotherm and kinetic studies vol.3, pp.1, 2018, https://doi.org/10.1007/s41204-018-0046-y
  16. Statistical optimization and modeling approach for azo dye decolorization: Combined effects of ultrasound waves and nanomaterial‐based adsorbent vol.32, pp.3, 2014, https://doi.org/10.1002/aoc.4205
  17. The uptake of Eriochrome Black T dye from aqueous solutions utilizing waste activated sludge: Adsorption process optimization using factorial design vol.44, pp.3, 2018, https://doi.org/10.1016/j.ejar.2018.09.001
  18. Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic studies vol.14, pp.4, 2014, https://doi.org/10.1007/s11705-019-1800-9